Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T13:01:48.009Z Has data issue: false hasContentIssue false

Global drag reduction and local flow statistics in Taylor–Couette turbulence with dilute polymer additives

Published online by Cambridge University Press:  03 January 2025

Yi-Bao Zhang
Affiliation:
New Cornerstone Science Laboratory, Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, PR China
Yaning Fan
Affiliation:
New Cornerstone Science Laboratory, Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, PR China
Jinghong Su
Affiliation:
New Cornerstone Science Laboratory, Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, PR China
Heng-Dong Xi*
Affiliation:
Institute of Extreme Mechanics, School of Aeronautics, National Key Laboratory of Aircraft Configuration Design, Northwestern Polytechnical University, Xi'an 710072, PR China
Chao Sun*
Affiliation:
New Cornerstone Science Laboratory, Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, PR China Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China
*
Email addresses for correspondence: hengdongxi@nwpu.edu.cn, chaosun@tsinghua.edu.cn
Email addresses for correspondence: hengdongxi@nwpu.edu.cn, chaosun@tsinghua.edu.cn

Abstract

We present an experimental study on the drag reduction by polymers in Taylor–Couette turbulence at Reynolds numbers ($Re$) ranging from $4\times 10^3$ to $2.5\times 10^4$. In this $Re$ regime, the Taylor vortex is present and accounts for more than 50 % of the total angular velocity flux. Polyacrylamide polymers with two different average molecular weights are used. It is found that the drag reduction rate increases with polymer concentration and approaches the maximum drag reduction (MDR) limit. At MDR, the friction factor follows the $-0.58$ scaling, i.e. $C_f \sim Re^{-0.58}$, similar to channel/pipe flows. However, the drag reduction rate is about $20\,\%$ at MDR, which is much lower than that in channel/pipe flows at comparable $Re$. We also find that the Reynolds shear stress does not vanish and the slope of the mean azimuthal velocity profile in the logarithmic layer remains unchanged at MDR. These behaviours are reminiscent of the low drag reduction regime reported in channel flow (Warholic et al., Exp. Fluids, vol. 27, no. 5, 1999, pp. 461–472). We reveal that the lower drag reduction rate originates from the fact that polymers strongly suppress the turbulent flow while only slightly weaken the mean Taylor vortex. We further show that polymers steady the velocity boundary layer and suppress the small-scale Görtler vortices in the near-wall region. The former effect reduces the emission rate of both intense fast and slow plumes detached from the boundary layer, resulting in less flux transport from the inner cylinder to the outer one and reduces energy input into the bulk turbulent flow. Our results suggest that in turbulent flows, where secondary flow structures are statistically persistent and dominate the global transport properties of the system, the drag reduction efficiency of polymer additives is significantly diminished.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andereck, C.D., Liu, S.S. & Swinney, H.L. 1986 Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech. 164, 155183.CrossRefGoogle Scholar
Barbosa, K.C.O., Cussuol, J.D., Soares, E.J., Andrade, R.M. & Khalil, M.C. 2022 Polymer drag reduction below and above the overlap concentration. J. Non-Newtonian Fluid Mech. 310, 104942.CrossRefGoogle Scholar
Boulafentis, T., Lacassagne, T., Cagney, N. & Balabani, S. 2023 Experimental insights into elasto-inertial transitions in Taylor–Couette flows. Phil. Trans. R. Soc. A 381 (2243), 20220131.CrossRefGoogle ScholarPubMed
Boulafentis, T., Lacassagne, T., Cagney, N. & Balabani, S. 2024 Coherent structures of elastoinertial instabilities in Taylor–Couette flows. J. Fluid Mech. 986, A27.CrossRefGoogle Scholar
Brauckmann, H.J. & Eckhardt, B. 2013 Direct numerical simulations of local and global torque in Taylor–Couette flow up to $Re=30\ 000$. J. Fluid Mech. 718, 398427.CrossRefGoogle Scholar
Choueiri, G.H., Lopez, J.M. & Hof, B. 2018 Exceeding the asymptotic limit of polymer drag reduction. Phys. Rev. Lett. 120 (12), 124501.CrossRefGoogle ScholarPubMed
Dong, S. 2007 Direct numerical simulation of turbulent Taylor–Couette flow. J. Fluid Mech. 587, 373393.CrossRefGoogle Scholar
Dutcher, C.S. & Muller, S.J. 2013 Effects of moderate elasticity on the stability of co-and counter-rotating Taylor–Couette flows. J. Rheol. 57 (3), 791812.CrossRefGoogle Scholar
Eckhardt, B., Grossmann, S. & Lohse, D. 2001 Scaling of global momentum transport in Taylor–Couette and pipe flow. Eur. Phys. J. B 19 (1), 163.Google Scholar
Eckhardt, B., Grossmann, S. & Lohse, D. 2007 Torque scaling in turbulent Taylor–Couette flow between independently rotating cylinders. J. Fluid Mech. 581, 221250.CrossRefGoogle Scholar
Ezeta, R., Huisman, S.G., Sun, C. & Lohse, D. 2018 Turbulence strength in ultimate Taylor–Couette turbulence. J. Fluid Mech. 836, 397412.CrossRefGoogle Scholar
Fardin, M.A., Perge, C. & Taberlet, N. 2014 ‘The hydrogen atom of fluid dynamics’ – introduction to the Taylor–Couette flow for soft matter scientists. Soft Matt. 10 (20), 35233535.CrossRefGoogle Scholar
Froitzheim, A., Ezeta, R., Huisman, S.G., Merbold, S., Sun, C., Lohse, D. & Egbers, C. 2019 Statistics, plumes and azimuthally travelling waves in ultimate Taylor–Couette turbulent vortices. J. Fluid Mech. 876, 733765.CrossRefGoogle Scholar
Froitzheim, A., Merbold, S. & Egbers, C. 2017 Velocity profiles, flow structures and scalings in a wide-gap turbulent Taylor–Couette flow. J. Fluid Mech. 831, 330357.CrossRefGoogle Scholar
Groisman, A. & Steinberg, V. 1996 Couette–Taylor flow in a dilute polymer solution. Phys. Rev. Lett. 77 (8), 1480.CrossRefGoogle Scholar
Groisman, A. & Steinberg, V. 1997 Solitary vortex pairs in viscoelastic couette flow. Phys. Rev. Lett. 78 (8), 1460.CrossRefGoogle Scholar
Groisman, A. & Steinberg, V. 2000 Elastic turbulence in a polymer solution flow. Nature 405 (6782), 5355.CrossRefGoogle Scholar
Groisman, A. & Steinberg, V. 2001 Efficient mixing at low reynolds numbers using polymer additives. Nature 410 (6831), 905908.CrossRefGoogle Scholar
Groisman, A. & Steinberg, V. 2004 Elastic turbulence in curvilinear flows of polymer solutions. New J. Phys. 6 (1), 29.CrossRefGoogle Scholar
Grossmann, S., Lohse, D. & Sun, C. 2016 High-Reynolds number Taylor–Couette turbulence. Annu. Rev. Fluid Mech. 48, 5380.CrossRefGoogle Scholar
Huisman, S.G., Lohse, D. & Sun, C. 2013 a Statistics of turbulent fluctuations in counter-rotating Taylor–Couette flows. Phys. Rev. E 88 (6), 063001.CrossRefGoogle ScholarPubMed
Huisman, S.G., Scharnowski, S., Cierpka, C., Kähler, C.J., Lohse, D. & Sun, C. 2013 b Logarithmic boundary layers in strong taylor-couette turbulence. Phys. Rev. Lett. 110 (26), 264501.CrossRefGoogle ScholarPubMed
Jiménez, J. 2018 Coherent structures in wall-bounded turbulence. J. Fluid Mech. 842, P1.CrossRefGoogle Scholar
Kim, K., Adrian, R.J., Balachandar, S. & Sureshkumar, R. 2008 Dynamics of hairpin vortices and polymer-induced turbulent drag reduction. Phys. Rev. Lett. 100 (13), 134504.CrossRefGoogle ScholarPubMed
Lacassagne, T., Cagney, N., Gillissen, J.J.J. & Balabani, S. 2020 Vortex merging and splitting: a route to elastoinertial turbulence in Taylor–Couette flow. Phys. Rev. Fluids 5 (11), 113303.CrossRefGoogle Scholar
Latrache, N., Abcha, N., Crumeyrolle, O. & Mutabazi, I. 2016 Defect-mediated turbulence in ribbons of viscoelastic Taylor–Couette flow. Phys. Rev. E 93 (4), 043126.CrossRefGoogle ScholarPubMed
Lee, S.H.-K., Sengupta, S. & Wei, T. 1995 Effect of polymer additives on Görtler vortices in Taylor–Couette flow. J. Fluid Mech. 282, 115129.CrossRefGoogle Scholar
Lewis, G.S. & Swinney, H.L. 1999 Velocity structure functions, scaling, and transitions in high-Reynolds-number Couette–Taylor flow. Phys. Rev. E 59 (5), 5457.CrossRefGoogle ScholarPubMed
Lin, F., Wan, Z.-H., Zhu, Y., Liu, N., Lu, X.-Y. & Khomami, B. 2022 High-fidelity robust and efficient finite difference algorithm for simulation of polymer-induced turbulence in cylindrical coordinates. J. Non-Newtonian Fluid Mech. 307, 104875.CrossRefGoogle Scholar
Lopez, J.M. 2022 Vortex merging and splitting events in viscoelastic Taylor–Couette flow. J. Fluid Mech. 946, A27.CrossRefGoogle Scholar
Marchioli, C. & Campolo, M. 2021 Drag reduction in turbulent flows by polymer and fiber additives. KONA Powder Part. J. 38, 6481.CrossRefGoogle Scholar
Marusic, I., Monty, J.P., Hultmark, M. & Smits, A.J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3.CrossRefGoogle Scholar
Min, T., Yoo, J.Y., Choi, H. & Joseph, D.D. 2003 Drag reduction by polymer additives in a turbulent channel flow. J. Fluid Mech. 486, 213238.CrossRefGoogle Scholar
Moazzen, M., Lacassagne, T., Thomy, V. & Bahrani, S.A. 2023 Friction dynamics of elasto-inertial turbulence in Taylor–Couette flow of viscoelastic fluids. Phil. Trans. R. Soc. A 381 (2246), 20220300.CrossRefGoogle ScholarPubMed
Ostilla-Mónico, R., Van Der Poel, E.P., Verzicco, R., Grossmann, S. & Lohse, D. 2014 Boundary layer dynamics at the transition between the classical and the ultimate regime of Taylor–Couette flow. Phys. Fluids 26, 015114.CrossRefGoogle Scholar
Ouellette, N.T., Xu, H. & Bodenschatz, E. 2009 Bulk turbulence in dilute polymer solutions. J. Fluid Mech. 629, 375385.CrossRefGoogle Scholar
Owolabi, B.E., Dennis, D.J.C. & Poole, R.J. 2017 Turbulent drag reduction by polymer additives in parallel-shear flows. J. Fluid Mech. 827, R4.CrossRefGoogle Scholar
Peng, S.-H., Zhang, Y.-B. & Xi, H.-D. 2023 Effects of polymer additives on the entrainment of turbulent water jet. Phys. Fluids 35 (4), 045110.Google Scholar
Perlekar, P., Mitra, D. & Pandit, R. 2010 Direct numerical simulations of statistically steady, homogeneous, isotropic fluid turbulence with polymer additives. Phys. Rev. E 82 (6), 066313.CrossRefGoogle ScholarPubMed
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Procaccia, I., L'vov, V.S. & Benzi, R. 2008 Colloquium: theory of drag reduction by polymers in wall-bounded turbulence. Rev. Mod. Phys. 80 (1), 225.CrossRefGoogle Scholar
Rajappan, A. & McKinley, G.H. 2020 Cooperative drag reduction in turbulent flows using polymer additives and superhydrophobic walls. Phys. Rev. Fluids 5 (11), 114601.CrossRefGoogle Scholar
Saeed, Z. & Elbing, B.R. 2023 Polymer drag reduction: a review through the lens of coherent structures in wall-bounded turbulent flows. Phys. Fluids 35 (8), 081304.CrossRefGoogle Scholar
Samanta, D., Dubief, Y., Holzner, M., Schäfer, C., Morozov, A.N., Wagner, C. & Hof, B. 2013 Elasto-inertial turbulence. Proc. Natl Acad. Sci. USA 110 (26), 1055710562.CrossRefGoogle ScholarPubMed
Shaqfeh, E.S.G. 1996 Purely elastic instabilities in viscometric flows. Annu. Rev. Fluid Mech. 28, 129185.CrossRefGoogle Scholar
Song, J., Lin, F., Liu, N., Lu, X.-Y. & Khomami, B. 2021 a Direct numerical simulation of inertio-elastic turbulent Taylor–Couette flow. J. Fluid Mech. 926, A37.CrossRefGoogle Scholar
Song, J., Wan, Z.-H., Liu, N., Lu, X.-Y. & Khomami, B. 2021 b A reverse transition route from inertial to elasticity-dominated turbulence in viscoelastic Taylor–Couette flow. J. Fluid Mech. 927, A10.CrossRefGoogle Scholar
Song, J., Zhu, Y., Lin, F., Liu, N. & Khomami, B. 2023 Turbulent Taylor–Couette flow of dilute polymeric solutions: a 10-year retrospective. Phil. Trans. R. Soc. A 381 (2243), 20220132.CrossRefGoogle ScholarPubMed
Thomas, D.G., Sureshkumar, R. & Khomami, B. 2006 Pattern formation in Taylor–Couette flow of dilute polymer solutions: dynamical simulations and mechanism. Phys. Rev. Lett. 97 (5), 054501.CrossRefGoogle ScholarPubMed
Valente, P.C., da Silva, C.B. & Pinho, F.T. 2014 The effect of viscoelasticity on the turbulent kinetic energy cascade. J. Fluid Mech. 760, 3962.CrossRefGoogle Scholar
Virk, P.S. 1975 Drag reduction fundamentals. AIChE J. 21 (4), 625656.CrossRefGoogle Scholar
Virk, P.S., Merrill, E.W., Mickley, H.S., Smith, K.A. & Mollo-Christensen, E.L. 1967 The toms phenomenon: turbulent pipe flow of dilute polymer solutions. J. Fluid Mech. 30 (2), 305328.CrossRefGoogle Scholar
Virk, P.S., Mickley, H.S. & Smith, K.A. 1970 The ultimate asymptote and mean flow structure in Toms’ phenomenon. Trans. ASME J. Appl. Mech. 37 (2), 488493.CrossRefGoogle Scholar
Wang, C., Yi, L., Jiang, L. & Sun, C. 2022 How do the finite-size particles modify the drag in Taylor–Couette turbulent flow. J. Fluid Mech. 937, A15.CrossRefGoogle Scholar
Warholic, M.D., Massah, H. & Hanratty, T.J. 1999 Influence of drag-reducing polymers on turbulence: effects of Reynolds number, concentration and mixing. Exp. Fluids 27 (5), 461472.CrossRefGoogle Scholar
Watanabe, T. & Gotoh, T. 2010 Coil-stretch transition in an ensemble of polymers in isotropic turbulence. Phys. Rev. E 81 (6), 066301.CrossRefGoogle Scholar
White, C.M. & Mungal, M.G. 2008 Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech. 40, 235256.CrossRefGoogle Scholar
Xi, H.-D., Bodenschatz, E. & Xu, H. 2013 Elastic energy flux by flexible polymers in fluid turbulence. Phys. Rev. Lett. 111 (2), 024501.CrossRefGoogle ScholarPubMed
Xi, L. 2019 Turbulent drag reduction by polymer additives: fundamentals and recent advances. Phys. Fluids 31 (12), 121302.CrossRefGoogle Scholar
Xie, Y.-C., Huang, S.-D., Funfschilling, D., Li, X.-M., Ni, R. & Xia, K.-Q. 2015 Effects of polymer additives in the bulk of turbulent thermal convection. J. Fluid Mech. 784, R3.CrossRefGoogle Scholar
Yi, L., Wang, C., van Vuren, T., Lohse, D., Risso, F., Toschi, F. & Sun, C. 2022 Physical mechanisms for droplet size and effective viscosity asymmetries in turbulent emulsions. J. Fluid Mech. 951, A39.CrossRefGoogle Scholar
Zhang, Y.-B., Bodenschatz, E., Xu, H. & Xi, H.-D. 2021 Experimental observation of the elastic range scaling in turbulent flow with polymer additives. Sci. Adv. 7 (14), eabd3525.CrossRefGoogle ScholarPubMed
Zhang, Y.-B. & Xi, H.-D. 2022 Measured energy injection, transfer, and dissipation rates in the bulk of dilute polymeric turbulent flow: the concentration and Weissenberg number effects. Phys. Fluids 34, 075114.Google Scholar