Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-12T19:56:27.845Z Has data issue: false hasContentIssue false

Grain-resolving simulations of submerged cohesive granular collapse

Published online by Cambridge University Press:  30 May 2022

Rui Zhu
Affiliation:
Ocean College, Zhejiang University, Zhoushan 316021, PR China Department of Mechanical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
Zhiguo He*
Affiliation:
Ocean College, Zhejiang University, Zhoushan 316021, PR China
Kunpeng Zhao
Affiliation:
State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
Bernhard Vowinckel
Affiliation:
Leichtweiß-Institut for Hydraulic Engineering and Water Resources, Technische Universität Braunschweig, 38106 Braunschweig, Germany
Eckart Meiburg*
Affiliation:
Department of Mechanical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
*
Email addresses for correspondence: hezhiguo@zju.edu.cn, meiburg@engineering.ucsb.edu
Email addresses for correspondence: hezhiguo@zju.edu.cn, meiburg@engineering.ucsb.edu

Abstract

We investigate the submerged collapse of weakly polydisperse, loosely packed cohesive granular columns, as a function of aspect ratio and cohesive force strength, via grain-resolving direct numerical simulations. The cohesive forces act to prevent the detachment of individual particles from the main body of the collapsing column, reduce its front velocity, and yield a shorter and thicker final deposit. All of these effects can be captured accurately across a broad range of parameters by piecewise power-law relationships. The cohesive forces reduce significantly the amount of available potential energy released by the particles. For shallow columns, the particle and fluid kinetic energy decreases for stronger cohesion. For tall columns, on the other hand, moderate cohesive forces increase the maximum particle kinetic energy, since they accelerate the initial free-fall of the upper column section. Only for larger cohesive forces does the peak kinetic energy of the particles decrease. Computational particle tracking indicates that the cohesive forces reduce the mixing of particles within the collapsing column, and it identifies the regions of origin of those particles that travel the farthest. The simulations demonstrate that cohesion promotes aggregation and the formation of aggregates. Furthermore, they provide complete information on the temporally and spatially evolving network of cohesive and direct contact force bonds. While the normal contact forces are aligned primarily in the vertical direction, the cohesive bonds adjust their preferred spatial orientation throughout the collapse. They result in a net macroscopic stress that counteracts deformation and slows the spreading of the advancing particle front.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramian, A., Lagrée, P.-Y. & Staron, L. 2021 How cohesion controls the roughness of a granular deposit. Soft Matt. 17 (47), 1072310729.CrossRefGoogle ScholarPubMed
Abramian, A., Staron, L. & Lagrée, P.-Y. 2020 The slumping of a cohesive granular column: continuum and discrete modeling. J. Rheol. 64 (5), 12271235.CrossRefGoogle Scholar
Artoni, R., Santomaso, A.C., Gabrieli, F., Tono, D. & Cola, S. 2013 Collapse of quasi-two-dimensional wet granular columns. Phys. Rev. E 87 (3), 032205.CrossRefGoogle Scholar
Baas, J.H., Best, J.L. & Peakall, J. 2011 Depositional processes, bedform development and hybrid bed formation in rapidly decelerated cohesive (mud–sand) sediment flows. Sedimentology 58 (7), 19531987.CrossRefGoogle Scholar
Balmforth, N.J. & Kerswell, R.R. 2005 Granular collapse in two dimensions. J. Fluid Mech. 538, 399428.CrossRefGoogle Scholar
Berger, N., Azéma, E., Douce, J.-F. & Radjai, F. 2016 Scaling behaviour of cohesive granular flows. Europhys. Lett. 112 (6), 64004.CrossRefGoogle Scholar
Biegert, E., Vowinckel, B. & Meiburg, E. 2017 A collision model for grain-resolving simulations of flows over dense, mobile, polydisperse granular sediment beds. J. Comput. Phys. 340, 105127.CrossRefGoogle Scholar
Bougouin, A. & Lacaze, L. 2018 Granular collapse in a fluid: different flow regimes for an initially dense-packing. Phys. Rev. Fluids 3 (6), 064305.CrossRefGoogle Scholar
Bougouin, A., Lacaze, L. & Bonometti, T. 2019 Collapse of a liquid-saturated granular column on a horizontal plane. Phys. Rev. Fluids 4 (12), 124306.CrossRefGoogle Scholar
Brunier-Coulin, F., Cuellar, P. & Philippe, P. 2020 Generalized Shields criterion for weakly cohesive granular materials. Phys. Rev. Fluids 5 (3), 034308.CrossRefGoogle Scholar
Courrech du Pont, S., Gondret, P., Perrin, B. & Rabaud, M. 2003 Granular avalanches in fluids. Phys. Rev. Lett. 90 (4), 044301.CrossRefGoogle ScholarPubMed
Dizaji, F.F., Marshall, J.S. & Grant, J.R. 2019 Collision and breakup of fractal particle agglomerates in a shear flow. J. Fluid Mech. 862, 592623.CrossRefGoogle Scholar
Gabrieli, F., Artoni, R., Santomaso, A. & Cola, S. 2013 Discrete particle simulations and experiments on the collapse of wet granular columns. Phys. Fluids 25 (10), 103303.CrossRefGoogle Scholar
Gans, A., Pouliquen, O. & Nicolas, M. 2020 Cohesion-controlled granular material. Phys. Rev. E 101 (3), 032904.CrossRefGoogle ScholarPubMed
Gondret, P., Lance, M. & Petit, L. 2002 Bouncing motion of spherical particles in fluids. Phys. Fluids 14 (2), 643652.CrossRefGoogle Scholar
Hampton, M.A. 1972 The role of subaqueous debris flow in generating turbidity currents. J. Sedim. Res. 42 (4), 775–793.Google Scholar
Iverson, R.M., Reid, M.E., Iverson, N.R., Lahusen, R.G., Logan, M., Mann, J.E. & Brien, D.L. 2000 Acute sensitivity of landslide rates to initial soil porosity. Science 290 (5491), 513516.CrossRefGoogle ScholarPubMed
Jarray, A., Shi, H., Scheper, B.J., Habibi, M. & Luding, S. 2019 Cohesion-driven mixing and segregation of dry granular media. Sci. Rep. 9 (1), 13480.CrossRefGoogle ScholarPubMed
Jing, L., Yang, G.C., Kwok, C.Y. & Sobral, Y.D. 2018 Dynamics and scaling laws of underwater granular collapse with varying aspect ratios. Phys. Rev. E 98 (4), 042901.CrossRefGoogle Scholar
Jing, L., Yang, G.C., Kwok, C.Y. & Sobral, Y.D. 2019 Flow regimes and dynamic similarity of immersed granular collapse: A CFD-DEM investigation. Powder Technol. 345, 532543.CrossRefGoogle Scholar
Joseph, G.G. & Hunt, M.L. 2004 Oblique particle–wall collisions in a liquid. J. Fluid Mech. 510, 7193.CrossRefGoogle Scholar
Kempe, T. & Fröhlich, J. 2012 An improved immersed boundary method with direct forcing for the simulation of particle laden flows. J. Comput. Phys. 231 (9), 36633684.CrossRefGoogle Scholar
Kuenen, P.H. 1951 Properties of turbidity currents of high density. Spec. Publ. Soc. Econ. Paleontol. and Mineral. 2, 14–33.Google Scholar
Lacaze, L., Bouteloup, J., Fry, B. & Izard, E. 2021 Immersed granular collapse: from viscous to free-fall unsteady granular flows. J. Fluid Mech. 912, A15.CrossRefGoogle Scholar
Lacaze, L. & Kerswell, R.R. 2009 Axisymmetric granular collapse: a transient 3D flow test of viscoplasticity. Phys. Rev. Lett. 102 (10), 108305.CrossRefGoogle ScholarPubMed
Lajeunesse, E., Mangeney-Castelnau, A. & Vilotte, J.-P. 2004 Spreading of a granular mass on a horizontal plane. Phys. Fluids 16 (7), 23712381.CrossRefGoogle Scholar
Lajeunesse, E., Monnier, J.B. & Homsy, G.M. 2005 Granular slumping on a horizontal surface. Phys. Fluids 17 (10), 103302.CrossRefGoogle Scholar
Langlois, V.J., Quiquerez, A. & Allemand, P. 2015 Collapse of a two-dimensional brittle granular column: implications for understanding dynamic rock fragmentation in a landslide. J. Geophys. Res.-Earth 120 (9), 18661880.CrossRefGoogle Scholar
Lee, C.-H., Huang, Z. & Yu, M.-L. 2018 Collapse of submerged granular columns in loose packing: experiment and two-phase flow simulation. Phys. Fluids 30 (12), 123307.CrossRefGoogle Scholar
Lube, G., Huppert, H.E., Sparks, R.S.J. & Freundt, A. 2005 Collapses of two-dimensional granular columns. Phys. Rev. E 72 (4), 041301.CrossRefGoogle ScholarPubMed
Lube, G., Huppert, H.E., Sparks, R.S.J. & Freundt, A. 2007 Static and flowing regions in granular collapses down channels. Phys. Fluids 19 (4), 043301.CrossRefGoogle Scholar
Lube, G., Huppert, H.E., Sparks, R.S.J. & Hallworth, M.A. 2004 Axisymmetric collapses of granular columns. J. Fluid Mech. 508, 175199.CrossRefGoogle Scholar
Mandal, S., Nicolas, M. & Pouliquen, O. 2020 Insights into the rheology of cohesive granular media. Proc. Natl Acad. Sci. 117 (15), 83668373.CrossRefGoogle ScholarPubMed
Marr, J.G., Harff, P.A., Shanmugam, G. & Parker, G. 2001 Experiments on subaqueous sandy gravity flows: the role of clay and water content in flow dynamics and depositional structures. Geol. Soc. Am. Bull. 113 (11), 13771386.2.0.CO;2>CrossRefGoogle Scholar
Mériaux, C. & Triantafillou, T. 2008 Scaling the final deposits of dry cohesive granular columns after collapse and quasi-static fall. Phys. Fluids 20 (3), 033301.CrossRefGoogle Scholar
Meruane, C., Tamburrino, A. & Roche, O. 2010 On the role of the ambient fluid on gravitational granular flow dynamics. J. Fluid Mech. 648, 381404.CrossRefGoogle Scholar
Pinzon, G. & Cabrera, M. 2019 Planar collapse of a submerged granular column. Phys. Fluids 31 (8), 086603.CrossRefGoogle Scholar
Rauter, M. 2021 The compressible granular collapse in a fluid as a continuum: validity of a Navier–Stokes model with-rheology. J. Fluid Mech. 915, A87.CrossRefGoogle Scholar
Rognon, P.G., Roux, J.-N., Wolf, D., Naaïm, M. & Chevoir, F. 2006 Rheophysics of cohesive granular materials. Europhys. Lett. 74 (4), 644.CrossRefGoogle Scholar
Rondon, L., Pouliquen, O. & Aussillous, P. 2011 Granular collapse in a fluid: role of the initial volume fraction. Phys. Fluids 23 (7), 073301.CrossRefGoogle Scholar
Santomaso, A.C., Volpato, S. & Gabrieli, F. 2018 Collapse and runout of granular columns in pendular state. Phys. Fluids 30 (6), 063301.CrossRefGoogle Scholar
Sauret, A., Gans, A., Gong, M., Pouliquen, O. & Nicolas, M. 2019 Experimental study of the collapse of cohesion-controlled granular materials. In APS Division of Fluid Dynamics Meeting Abstracts, pp. H04-005.Google Scholar
Siavoshi, S. & Kudrolli, A. 2005 Failure of a granular step. Phys. Rev. E 71 (5), 051302.CrossRefGoogle ScholarPubMed
Staron, L. & Hinch, E.J. 2005 Study of the collapse of granular columns using two-dimensional discrete-grain simulation. J. Fluid Mech. 545, 127.CrossRefGoogle Scholar
Sun, Y.-H., Zhang, W.-T., Wang, X.-L. & Liu, Q.-Q. 2020 Numerical study on immersed granular collapse in viscous regime by particle-scale simulation. Phys. Fluids 32 (7), 073313.CrossRefGoogle Scholar
Topin, V., Dubois, F., Monerie, Y., Perales, F. & Wachs, A. 2011 Micro-rheology of dense particulate flows: application to immersed avalanches. J. Non-Newtonian Fluid 166 (1–2), 6372.CrossRefGoogle Scholar
Topin, V., Monerie, Y., Perales, F. & Radjai, F. 2012 Collapse dynamics and runout of dense granular materials in a fluid. Phys. Rev. Lett. 109 (18), 188001.CrossRefGoogle Scholar
Uhlmann, M. 2005 An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209 (2), 448476.CrossRefGoogle Scholar
Vowinckel, B., Biegert, E., Luzzatto-Fegiz, P. & Meiburg, E. 2019 a Consolidation of freshly deposited cohesive and noncohesive sediment: particle-resolved simulations. Phys. Rev. Fluids 4 (7), 074305.CrossRefGoogle Scholar
Vowinckel, B., Withers, J., Luzzatto-Fegiz, P. & Meiburg, E. 2019 b Settling of cohesive sediment: particle-resolved simulations. J. Fluid Mech. 858, 544.CrossRefGoogle Scholar
Xu, W.-J., Dong, X.-Y. & Ding, W.-T. 2019 Analysis of fluid–particle interaction in granular materials using coupled SPH-DEM method. Powder Technol. 353, 459472.CrossRefGoogle Scholar
Yang, G.C., Jing, L., Kwok, C.Y. & Sobral, Y.D. 2019 A comprehensive parametric study of LBM-DEM for immersed granular flows. Comput. Geotech. 114, 103100.CrossRefGoogle Scholar
Yang, G.C., Jing, L., Kwok, C.Y. & Sobral, Y.D. 2020 Pore-scale simulation of immersed granular collapse: implications to submarine landslides. J. Geophys. Res.-Earth 125 (1), e2019JF005044.Google Scholar
Yang, G.C., Jing, L., Kwok, C.Y. & Sobral, Y.D. 2021 Size effects in underwater granular collapses: experiments and coupled lattice Boltzmann and discrete element method simulations. Phys. Rev. Fluids 6 (11), 114302.CrossRefGoogle Scholar
Zhao, K., Pomes, F., Vowinckel, B., Hsu, T.-J., Bai, B. & Meiburg, E. 2021 Flocculation of suspended cohesive particles in homogeneous isotropic turbulence. J. Fluid Mech. 921, A17.CrossRefGoogle Scholar
Zhao, K., Vowinckel, B., Hsu, T.-J., Köllner, T., Bai, B. & Meiburg, E. 2020 An efficient cellular flow model for cohesive particle flocculation in turbulence. J. Fluid Mech. 889, R3.CrossRefGoogle Scholar
Zhou, T., Ioannidou, K., Masoero, E., Mirzadeh, M., Pellenq, R.J.-M. & Bazant, M.Z. 2019 Capillary stress and structural relaxation in moist granular materials. Langmuir 35 (12), 43974402.CrossRefGoogle ScholarPubMed

Zhu et al. Supplementary Movie 1

The internal structure for Co=0 and a=1

Download Zhu et al. Supplementary Movie 1(Video)
Video 14.9 MB

Zhu et al. Supplementary Movie 2

The internal structure for Co=20 and a=1

Download Zhu et al. Supplementary Movie 2(Video)
Video 10 MB

Zhu et al. Supplementary Movie 3

The internal structure for Co=0 and a=8.6

Download Zhu et al. Supplementary Movie 3(Video)
Video 14.3 MB

Zhu et al. Supplementary Movie 4

The internal structure for Co=50 and a=8.6

Download Zhu et al. Supplementary Movie 4(Video)
Video 7.8 MB

Zhu et al. Supplementary Movie 5

The evolution of four particle clusters for Co=0 and a=1

Download Zhu et al. Supplementary Movie 5(Video)
Video 7.5 MB

Zhu et al. Supplementary Movie 6

The evolution of four particle clusters for Co=10 and a=1

Download Zhu et al. Supplementary Movie 6(Video)
Video 5.5 MB

Zhu et al. Supplementary Movie 7

The evolution of initial cohesive bonds for Co=10 and a=1

Download Zhu et al. Supplementary Movie 7(Video)
Video 9.5 MB

Zhu et al. Supplementary Movie 8

The evolution of initial cohesive bonds for Co=25 and a=8.6

Download Zhu et al. Supplementary Movie 8(Video)
Video 6.4 MB