No CrossRef data available.
Published online by Cambridge University Press: 03 November 2025

Understanding the flow behaviour of wet granular materials is essential for comprehending the dynamics of numerous geological and physical phenomena, but remains a significant challenge, especially the transition of these flow regimes. In this study, we perform a series of rotating drum experiments to systematically investigate the dynamic observables and flow regimes of wet mono-dispersed particles. Two typical continuous flows including rolling and cascading regimes are identified and analysed, concentrating on the impact of fluid density and rotation speed. The probability density functions of surface angles,
$\theta _{\textit{top}}$ and
$\theta _{\textit{lo}w\textit{er}}$, reveal distinct patterns for these two flow regimes. A morphological parameter thus proposed, termed angle divergence, is used to characterise the rolling–cascading regime transition quantitatively. By integrating quantitative observables, we construct the flow phase diagram and flow curve to delineate the transition rules governing these regimes. Notably, the resulting nonlinear phase boundary demonstrates that higher fluid densities significantly enhance the likelihood of the system transitioning into the cascading regime. This finding is further supported by corresponding variations in flow fluctuations. Our results provide new insights into the fundamental dynamics of wet granular matter, offering valuable implications for understanding the complex rheology of underwater landslides and related phenomena.