Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T20:51:59.022Z Has data issue: false hasContentIssue false

Hanging droplets from liquid interfaces

Published online by Cambridge University Press:  15 March 2023

Piyush Singh
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology, Kanpur 208016, India
Narinder Singh
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology, Kanpur 208016, India
Anikesh Pal*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology, Kanpur 208016, India
*
Email address for correspondence: pala@iitk.ac.in

Abstract

The impact of a heavier droplet falling into a deep pool of lighter liquid is investigated using three-dimensional numerical simulations. We demonstrate that the heavier droplets can hang from the surface of a lighter liquid using surface tension. The impact phenomenon and the evolution of the heavier droplet as a function of its size and release height are explored. A theoretical model is also formulated to understand the role of different forms of energy associated with the hanging droplet. We further solve the force balance equations for the hanging droplets analytically, and demonstrate that the results obtained from our simulations match very well the analytical solution. This research offers opportunities in many areas, including drug and gene delivery, encapsulation of biomolecules, microfluidics, soft robots, and remediation of oil spills.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albertsson, P.A. 1986 Partition of cell particles and macromolecules: Separation and purification of biomolecules, cell organelles, membranes and cells in aqueous polymer two phase systems and their use in biochemical analysis and biotechnology, 3rd edn. Wiley.Google Scholar
Boyer, F., Lapuerta, C., Minjeaud, S., Piar, B. & Quintard, M. 2010 Cahn–Hilliard/Navier–Stokes model for the simulation of three-phase flows. Transp. Porous Med. 82 (3), 463483.CrossRefGoogle Scholar
Brackbill, J.U., Kothe, D.B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100 (2), 335354.CrossRefGoogle Scholar
Bush, J.W.M. & Hu, D.L. 2006 Walking on water: biolocomotion at the interface. Annu. Rev. Fluid Mech. 38 (1), 339369.CrossRefGoogle Scholar
Chan, T.F. & Vese, L.A. 2001 Active contours without edges. IEEE Trans. Image Process. 10 (2), 266277.CrossRefGoogle ScholarPubMed
Chang, Y.-C., Hou, T.Y., Merriman, B. & Osher, S. 1996 A level set formulation of Eulerian interface capturing methods for incompressible fluid flows. J. Comput. Phys. 124 (2), 449464.CrossRefGoogle Scholar
Chao, Y., Mak, S.Y., Rahman, S., Zhu, S. & Shum, H.C. 2018 Generation of high-order all-aqueous emulsion drops by osmosis-driven phase separation. Small 14 (39), 1802107.CrossRefGoogle ScholarPubMed
Che, Z. & Matar, O.K. 2018 Impact of droplets on immiscible liquid films. Soft Matt. 14 (9), 15401551.CrossRefGoogle ScholarPubMed
Delcea, M., Möhwald, H. & Skirtach, A.G. 2011 Stimuli-responsive LBL capsules and nanoshells for drug delivery. Adv. Drug Deliv. Rev. 63 (9), 730747.CrossRefGoogle ScholarPubMed
Dong, S. 2014 An efficient algorithm for incompressible $n$-phase flows. J. Comput. Phys. 276, 691728.CrossRefGoogle Scholar
Duchemin, L. & Josserand, C. 2020 Dimple drainage before the coalescence of a droplet deposited on a smooth substrate. Proc. Natl Acad. Sci. USA 117 (34), 2041620422.CrossRefGoogle ScholarPubMed
Enright, D., Fedkiw, R., Ferziger, J. & Mitchell, I. 2002 A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183 (1), 83116.CrossRefGoogle Scholar
Feng, X.-Q., Gao, X., Wu, Z., Jiang, L. & Zheng, Q.-S. 2007 Superior water repellency of water strider legs with hierarchical structures: experiments and analysis. Langmuir 23 (9), 48924896.CrossRefGoogle ScholarPubMed
Flemmer, R.L.C. & Banks, C.L. 1986 On the drag coefficient of a sphere. Powder Technol. 48 (3), 217221.CrossRefGoogle Scholar
Greene, G.A., Chen, J.C. & Conlin, M.T. 1988 Onset of entrainment between immiscible liquid layers due to rising gas bubbles. Intl J. Heat Mass Transfer 31 (6), 13091317.CrossRefGoogle Scholar
Greene, G.A., Chen, J.C. & Conlin, M.T. 1991 Bubble induced entrainment between stratified liquid layers. Intl J. Heat Mass Transfer 34 (1), 149157.CrossRefGoogle Scholar
Grosjean, G., Hubert, M. & Vandewalle, N. 2018 Magnetocapillary self-assemblies: locomotion and micromanipulation along a liquid interface. Adv. Colloid Interface Sci. 255, 8493.CrossRefGoogle ScholarPubMed
Hann, S.D., Niepa, T.H.R., Stebe, K.J. & Lee, D. 2016 One-step generation of cell-encapsulating compartments via polyelectrolyte complexation in an aqueous two phase system. ACS Appl. Mater. Interfaces 8 (38), 2560325611.CrossRefGoogle Scholar
Hann, S.D., Stebe, K.J. & Lee, D. 2017 Awe-somes: all water emulsion bodies with permeable shells and selective compartments. ACS Appl. Mater. Interfaces 9 (29), 2502325028.CrossRefGoogle ScholarPubMed
Hirt, C.W. & Nichols, B.D. 1981 Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39 (1), 201225.CrossRefGoogle Scholar
Howard, A.A. & Tartakovsky, A.M. 2021 A conservative level set method for $n$-phase flows with a free-energy-based surface tension model. J. Comput. Phys. 426, 109955.CrossRefGoogle Scholar
Hu, D.L. & Bush, J.W.M. 2005 Meniscus-climbing insects. Nature 437 (7059), 733736.CrossRefGoogle ScholarPubMed
Hu, W., Lum, G.Z., Mastrangeli, M. & Sitti, M. 2018 Small-scale soft-bodied robot with multimodal locomotion. Nature 554 (7690), 8185.CrossRefGoogle ScholarPubMed
Jiang, J., Gao, J., Zhang, H., He, W., Zhang, J., Daniel, D. & Yao, X. 2019 Directional pumping of water and oil microdroplets on slippery surface. Proc. Natl Acad. Sci. USA 116 (7), 24822487.CrossRefGoogle ScholarPubMed
Klitz, M. 2015 Numerical simulation of droplets with dynamic contact angles. PhD thesis, Rheinische Friedrich-Wilhelms-Universität Bonn.Google Scholar
Koh, J.-S., Yang, E., Jung, G.-P., Jung, S.-P., Son, J.H., Lee, S.-I., Jablonski, P.G., Wood, R.J., Kim, H.-Y. & Cho, K.-J. 2015 Jumping on water: surface tension-dominated jumping of water striders and robotic insects. Science 349 (6247), 517521.CrossRefGoogle ScholarPubMed
Kumar, D., Paulsen, J.D., Russell, T.P. & Menon, N. 2018 Wrapping with a splash: high-speed encapsulation with ultrathin sheets. Science 359 (6377), 775778.CrossRefGoogle ScholarPubMed
Lee, S.C., Kim, J.H. & Lee, S.J. 2017 Floating of the lobes of mosquito (Aedes togoi) larva for respiration. Sci. Rep. 7 (1), 18.Google ScholarPubMed
Li, P., Xie, G., Liu, P., Kong, X.-Y., Song, Y., Wen, L. & Jiang, L. 2018 Light-driven ATP transmembrane transport controlled by DNA nanomachines. J. Am. Chem. Soc. 140 (47), 1604816052.CrossRefGoogle ScholarPubMed
Ménard, T., Tanguy, S. & Berlemont, A. 2007 Coupling level set/VOF/ghost fluid methods: validation and application to 3D simulation of the primary break-up of a liquid jet. Intl J. Multiphase Flow 33 (5), 510524.CrossRefGoogle Scholar
Orive, G., et al. 2003 Cell encapsulation: promise and progress. Nat. Med. 9 (1), 104107.CrossRefGoogle ScholarPubMed
Osher, S. & Sethian, J.A. 1988 Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79 (1), 1249.CrossRefGoogle Scholar
Pal, A. 2020 Deep learning emulation of subgrid-scale processes in turbulent shear flows. Geophys. Res. Lett. 47 (12), e2020GL087005.CrossRefGoogle Scholar
Pal, A. & Chalamalla, V.K. 2020 Evolution of plumes and turbulent dynamics in deep-ocean convection. J. Fluid Mech. 889, A35.CrossRefGoogle Scholar
Phan, C.M. 2014 Stability of a floating water droplet on an oil surface. Langmuir 30 (3), 768773.CrossRefGoogle Scholar
Phan, C.M., Allen, B., Peters, L.B., Le, T.N. & Tade, M.O. 2012 Can water float on oil? Langmuir 28 (10), 46094613.CrossRefGoogle ScholarPubMed
Ruuth, S.J. 1998 A diffusion-generated approach to multiphase motion. J. Comput. Phys. 145 (1), 166192.CrossRefGoogle Scholar
Smith, K.A., Solis, F.J. & Chopp, D. 2002 A projection method for motion of triple junctions by level sets. Interface Free Bound. 4 (3), 263276.CrossRefGoogle Scholar
Son, G. 2003 Efficient implementation of a coupled level-set and volume-of-fluid method for three-dimensional incompressible two-phase flows. Numer. Heat Transfer 43 (6), 549565.CrossRefGoogle Scholar
Son, G. & Dhir, V.K. 2007 A level set method for analysis of film boiling on an immersed solid surface. Numer. Heat Transfer 52 (2), 153177.CrossRefGoogle Scholar
Starinshak, D.P., Karni, S. & Roe, P.L. 2014 a A new level set model for multimaterial flows. J. Comput. Phys. 262, 116.CrossRefGoogle Scholar
Starinshak, D.P., Karni, S. & Roe, P.L. 2014 b A new level-set model for the representation of non-smooth geometries. J. Sci. Comput. 61 (3), 649672.CrossRefGoogle Scholar
Sussman, M. & Puckett, E.G. 2000 A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys. 162 (2), 301337.CrossRefGoogle Scholar
Vella, D. 2015 Floating versus sinking. Annu. Rev. Fluid Mech. 47, 115135.CrossRefGoogle Scholar
Wang, Z., Yang, J., Koo, B. & Stern, F. 2009 A coupled level set and volume-of-fluid method for sharp interface simulation of plunging breaking waves. Intl J. Multiphase Flow 35 (3), 227246.CrossRefGoogle Scholar
Williamson, J.H. 1980 Low-storage Runge–Kutta schemes. J. Comput. Phys. 35 (1), 4856.CrossRefGoogle Scholar
Xie, G., Forth, J., Chai, Y., Ashby, P.D., Helms, B.A. & Russell, T.P. 2019 Compartmentalized, all-aqueous flow-through-coordinated reaction systems. Chem 5 (10), 26782690.CrossRefGoogle Scholar
Xie, G., Forth, J., Zhu, S., Helms, B.A., Ashby, P.D., Shum, H.C. & Russell, T.P. 2020 Hanging droplets from liquid surfaces. Proc. Natl Acad. Sci. USA 117 (15), 83608365.CrossRefGoogle ScholarPubMed
Yuan, H.Z., Chen, Z., Shu, C., Wang, Y., Niu, X.D. & Shu, S. 2017 A free energy-based surface tension force model for simulation of multiphase flows by level-set method. J. Comput. Phys. 345, 404426.CrossRefGoogle Scholar
Zhang, L., Cai, L.-H., Lienemann, P.S., Rossow, T., Polenz, I., Vallmajo-Martin, Q., Ehrbar, M., Na, H., Mooney, D.J. & Weitz, D.A. 2016 One-step microfluidic fabrication of polyelectrolyte microcapsules in aqueous conditions for protein release. Angew. Chem. Intl Ed. Engl. 128 (43), 1366813672.CrossRefGoogle Scholar
Zlotnik, S. & Díez, P. 2009 Hierarchical X-FEM for $n$-phase flow ($n>2$). Comput. Meth. Appl. Mech. Engng 198 (30–32), 23292338.CrossRefGoogle Scholar

Singh et al. Supplementary Movie 1

See "Singh et al. Supplementary Movie Captions"
Download Singh et al. Supplementary Movie 1(Video)
Video 955.5 KB

Singh et al. Supplementary Movie 2

See "Singh et al. Supplementary Movie Captions"
Download Singh et al. Supplementary Movie 2(Video)
Video 1.6 MB

Singh et al. Supplementary Movie 3

See "Singh et al. Supplementary Movie Captions"
Download Singh et al. Supplementary Movie 3(Video)
Video 3.9 MB

Singh et al. Supplementary Movie 4

See "Singh et al. Supplementary Movie Captions"
Download Singh et al. Supplementary Movie 4(Video)
Video 1.1 MB

Singh et al. Supplementary Movie 5

See "Singh et al. Supplementary Movie Captions"
Download Singh et al. Supplementary Movie 5(Video)
Video 2 MB

Singh et al. Supplementary Movie 6

See "Singh et al. Supplementary Movie Captions"
Download Singh et al. Supplementary Movie 6(Video)
Video 1.7 MB

Singh et al. Supplementary Movie 7

See "Singh et al. Supplementary Movie Captions"
Download Singh et al. Supplementary Movie 7(Video)
Video 538.2 KB

Singh et al. Supplementary Movie 8

See "Singh et al. Supplementary Movie Captions"
Download Singh et al. Supplementary Movie 8(Video)
Video 920.3 KB

Singh et al. Supplementary Movie 9

See "Singh et al. Supplementary Movie Captions"
Download Singh et al. Supplementary Movie 9(Video)
Video 2 MB
Supplementary material: PDF

Singh et al. Supplementary Movie Captions

Singh et al. Supplementary Movie Captions

Download Singh et al. Supplementary Movie Captions(PDF)
PDF 34.1 KB