Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T20:59:03.124Z Has data issue: false hasContentIssue false

Has the ultimate state of turbulent thermal convection been observed?

Published online by Cambridge University Press:  17 November 2015

L. Skrbek*
Affiliation:
Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague, Czech Republic
P. Urban
Affiliation:
Institute of Scientific Instruments ASCR, v.v.i., Královopolská 147, 612 00 Brno, Czech Republic
*
Email address for correspondence: skrbek@nbox.troja.mff.cuni.cz

Abstract

An important question in turbulent Rayleigh–Bénard convection is the scaling of the Nusselt number with the Rayleigh number in the so-called ultimate state, corresponding to asymptotically high Rayleigh numbers. A related but separate question is whether the measurements support the so-called Kraichnan law, according to which the Nusselt number varies as the square root of the Rayleigh number (modulo a logarithmic factor). Although there have been claims that the Kraichnan regime has been observed in laboratory experiments with low aspect ratios, the totality of existing experimental results presents a conflicting picture in the high-Rayleigh-number regime. We analyse the experimental data to show that the claims on the ultimate state leave open an important consideration relating to non-Oberbeck–Boussinesq effects. Thus, the nature of scaling in the ultimate state of Rayleigh–Bénard convection remains open.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlers, G., Araujo, F. F., Funfschilling, D., Grossmann, S. & Lohse, D. 2007 Non-Oberbeck–Boussinesq effects in gaseous Rayleigh–Bénard convection. Phys. Rev. Lett. 98, 054501.Google Scholar
Ahlers, G., Bodenschatz, E., Funfschilling, D., Grossmann, S., He, X. Z., Lohse, D., Stevens, R. J. A. M. & Verzicco, R. 2012a Logarithmic temperature profiles in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 109, 114501.Google Scholar
Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.Google Scholar
Ahlers, G., He, X., Funfschilling, D. & Bodenschatz, E. 2012b Heat transport by turbulent Rayleigh–Bénard convection for $Pr\simeq 0.8$ and $3\times 10^{12}\lesssim Ra\lesssim 10^{15}$ : aspect ratio ${\it\Gamma}=0.50$ . New J. Phys. 14, 103012.Google Scholar
Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., Wu, X. Z., Zaleski, S. & Zanetti, G. 1989 Scaling of hard thermal turbulence in Rayleigh–Bénard convection. J. Fluid Mech. 204, 130.Google Scholar
Chavanne, X., Chillà, F., Castaing, B., Hébral, B., Chabaud, B. & Chaussy, J. 1997 Observation of the ultimate regime in Rayleigh–Bénard convection. Phys. Rev. Lett. 79, 36483651.Google Scholar
Chavanne, X., Chillà, F., Chabaud, B., Castaing, B. & Hébral, B. 2001 Turbulent Rayleigh–Bénard convection in gaseous and liquid He. Phys. Fluids 13, 13001320.Google Scholar
Chillà, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35, 58.Google Scholar
Doering, C. R.2012 Rigorous results for heat transport in high Rayleigh number convection. In International Conference on RB Turbulence, Hong Kong.Google Scholar
Funfschilling, D., Bodenschatz, E. & Ahlers, G. 2009 Search for the ‘ultimate state’ in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 103, 014503.Google Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.Google Scholar
He, X., Funfschilling, D., Bodenschatz, E. & Ahlers, G. 2012a Heat transport by turbulent Rayleigh–Bénard convection for $Pr\simeq 0.8$ and $4\times 10^{11}\lesssim Ra\lesssim 2\times 10^{14}$ : ultimate-state transition for aspect ratio ${\it\Gamma}=1.00$ . New J. Phys. 14, 063030.Google Scholar
He, X., Funfschilling, D., Nobach, H., Bodenschatz, E. & Ahlers, G. 2012b Transition to the ultimate state of turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 108, 024502.Google Scholar
He, X., Funfschilling, D., Nobach, H., Bodenschatz, E. & Ahlers, G. 2013 Comment on ‘Effect of boundary layers asymmetry on heat transfer efficiency in turbulent Rayleigh–Bénard convection at very high Rayleigh numbers’. Phys. Rev. Lett. 110, 199401.Google Scholar
He, X., van Gils, P. M., Bodenschatz, E. & Ahlers, G.2014 Transition of heat transfer by turbulent Rayleigh–Bénard convection at high $Ra$ . In Abstract book of the EFMC 10 Conference, Copenhagen, Sept. 14–18.Google Scholar
Kraichnan, R. H. 1962 Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5, 13741389.Google Scholar
Malkus, M. V. R. 1954 The heat transport and spectrum of thermal turbulence. Proc. R. Soc. Lond. A 225, 196212.Google Scholar
Niemela, J. J., Skrbek, L., Sreenivasan, K. R. & Donnelly, R. J. 2000 Turbulent convection at very high Rayleigh numbers. Nature 404, 837840.Google Scholar
Niemela, J. J., Skrbek, L., Sreenivasan, K. R. & Donnelly, R. J. 2001 The wind in confined thermal convection. J. Fluid Mech. 449, 169178.Google Scholar
Niemela, J. J. & Sreenivasan, K. R. 2003 Confined turbulent convection. J. Fluid Mech. 481, 355384.Google Scholar
Niemela, J. J. & Sreenivasan, K. R. 2006 The use of cryogenic helium for classical turbulence. J. Low Temp. Phys. 143, 163212.Google Scholar
Niemela, J. J. & Sreenivasan, K. R. 2010 Does confined turbulent convection ever attain the ‘asymptotic scaling’ with $1/2$ -power? New J. Phys. 12, 115002.Google Scholar
Priestley, C. H. B. 1959 Turbulent Transfer in the Lower Atmosphere. vol. 42, pp. 36503653. University of Chicago Press.Google Scholar
Roche, P. E., Gauthier, F., Kaiser, R. & Salort, J. 2010 On the triggering of the ultimate regime of convection. New J. Phys. 12, 085014.Google Scholar
Shraiman, B. I. & Siggia, E. D. 1990 Heat transport in high-Rayleigh number convection. Phys. Rev. A 42, 36503653.Google Scholar
Spiegel, E. A. 1971 Convection in stars 1: basic Boussinesq convection. Annu. Rev. Astron. Astrophys. 9, 323.Google Scholar
Sreenivasan, K. R. 1998 Helium flows at ultra-high Reynolds and Rayleigh numbers. In Flow at ultra-high Reynolds and Rayleigh numbers (ed. Donnelly, R. J. & Sreenivasan, K. R.), pp. 2951. Springer.Google Scholar
Stevens, R. J. A. M., van der Poel, E. P., Grossmann, S. & Lohse, D. 2013 The unifying theory of scaling in thermal convection: the updated prefactors. J. Fluid Mech. 730, 295308.Google Scholar
Thalabard, S., Saint-Michel, B., Herbert, E., Daviaud, F. & Dubrulle, B. 2015 A statistical mechanics framework for the large-scale structure of turbulent von Karman flows. New J. Phys. 17, 063006.Google Scholar
Tritton, D. J. 1988 Physical Fluid Dynamics. Oxford University Press.Google Scholar
Urban, P., Hanzelka, P., Králík, T., Musilová, V., Skrbek, L. & Srnka, A. 2010 Helium cryostat for experimental study of natural turbulent convection. Rev. Sci. Instrum. 81, 085103.Google Scholar
Urban, P., Hanzelka, P., Králík, T., Musilová, V., Srnka, A. & Skrbek, L. 2012 Effect of boundary layers asymmetry on heat transfer efficiency in turbulent Rayleigh–Bénard convection at very high Rayleigh numbers. Phys. Rev. Lett. 109, 154301.Google Scholar
Urban, P., Hanzelka, P., Králík, T., Musilová, V., Srnka, A. & Skrbek, L. 2013 Reply to Comment on ‘Effect of boundary layers asymmetry on heat transfer efficiency in turbulent Rayleigh–Bénard convection at very high Rayleigh numbers’. Phys. Rev. Lett. 110, 199402.Google Scholar
Urban, P., Hanzelka, P., Musilová, V., Králík, T., La Mantia, M., Srnka, A. & Skrbek, L. 2014 Heat transfer in cryogenic helium gas by turbulent Rayleigh–Bénard convection in a cylindrical cell of aspect ratio 1. New J. Phys. 16, 053042.Google Scholar
Urban, P., Musilová, V. & Skrbek, L. 2011 Efficiency of heat transfer in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 107, 014302.Google Scholar
Wu, X.-Z.1991 Along a road to developed turbulence: free thermal convection in low temperature helium gas. PhD thesis, University of Chicago, pp. 1–123.Google Scholar
Wu, X.-Z. & Libchaber, A. 1991 Non-Boussinesq effects in free thermal convection. Phys. Rev. A 43, 28332839.Google Scholar
Zhong, J. Q., Funfschilling, D. & Ahlers, G. 2009 Enhanced heat transport by turbulent two-phase Rayleigh–Bénard convection. Phys. Rev. Lett. 102, 124501.Google Scholar