Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T16:56:44.629Z Has data issue: false hasContentIssue false

Homogeneous swarm of high-Reynolds-number bubbles rising within a thin gap. Part 1. Bubble dynamics

Published online by Cambridge University Press:  02 July 2012

Emmanuella Bouche
Affiliation:
Institut de Mécanique des Fluides de Toulouse, Université de Toulouse (INPT, UPS) and CNRS, allée C. Soula, Toulouse, 31400, France Fédération de Recherche FERMaT, CNRS, allée C. Soula, Toulouse, 31400, France
Véronique Roig*
Affiliation:
Institut de Mécanique des Fluides de Toulouse, Université de Toulouse (INPT, UPS) and CNRS, allée C. Soula, Toulouse, 31400, France Fédération de Recherche FERMaT, CNRS, allée C. Soula, Toulouse, 31400, France
Frédéric Risso
Affiliation:
Institut de Mécanique des Fluides de Toulouse, Université de Toulouse (INPT, UPS) and CNRS, allée C. Soula, Toulouse, 31400, France Fédération de Recherche FERMaT, CNRS, allée C. Soula, Toulouse, 31400, France
Anne-Marie Billet
Affiliation:
Laboratoire de Génie Chimique, Université de Toulouse (INPT, UPS) and CNRS, 4 allée E. Monso, BP 74233, Toulouse CEDEX 4, 31432, France Fédération de Recherche FERMaT, CNRS, allée C. Soula, Toulouse, 31400, France
*
Email address for correspondence: roig@imft.fr

Abstract

The spatial distribution, the velocity statistics and the dispersion of the gas phase have been investigated experimentally in a homogeneous swarm of bubbles confined within a thin gap. In the considered flow regime, the bubbles rise on oscillatory paths while keeping a constant shape. They are followed by unstable wakes which are strongly attenuated due to wall friction. According to the direction that is considered, the physical mechanisms are totally different. In the vertical direction, the entrainment by the wakes controls the bubble agitation, causing the velocity variance and the dispersion coefficient to increase almost linearly with the gas volume fraction. In the horizontal direction, path oscillations are the major cause of bubble agitation, leading to a constant velocity variance. The horizontal dispersion, which is lower than that in the vertical direction, is again observed to increase almost linearly with the gas volume fraction. It is however not directly due to regular path oscillations, which are unable to generate a net deviation over a whole period, but results from bubble interactions which cause a loss of the bubble velocity time correlation.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bunner, B. & Tryggvason, G. 2002a Dynamics of homogeneous bubbly flows. Part 1. Rise velocity and microstructure of the bubbles. J. Fluid Mech. 466, 1752.CrossRefGoogle Scholar
2. Bunner, B. & Tryggvason, G. 2002b Dynamics of homogeneous bubbly flows. Part 2. Velocity fluctuations. J. Fluid Mech. 466, 5384.CrossRefGoogle Scholar
3. Bunner, B. & Tryggvason, G. 2003 Effect of bubble deformation on the properties of bubbly flows. J. Fluid Mech. 495, 77118.CrossRefGoogle Scholar
4. Cartellier, A., Andreotti, M. & Sechet, P. 2009 Induced agitation in homogeneous bubbly flows at moderate particle Reynolds number. Phys. Rev. E 80, 065301(R).CrossRefGoogle ScholarPubMed
5. Cartellier, A. & Riviere, N. 2001 Bubble-induced agitation and microstructure in uniform bubbly flows at small to moderate particule Reynolds numbers. Phys. Fluids 13 (8), 21652181.CrossRefGoogle Scholar
6. Ellingsen, K. & Risso, F. 2001 On the rise of an ellipsoidal bubble in water: oscillatory paths and liquid-induced velocity. J. Fluid Mech. 440, 235268.CrossRefGoogle Scholar
7. Ern, P., Risso, F., Fabre, D. & Magnaudet, J. 2012 Wake-induced oscillatory paths of freely rising or falling bodies. Annu. Rev. Fluid Mech. 44, 1.CrossRefGoogle Scholar
8. Esmaeeli, A. & Tryggvason, G. 2005 A direct numerical simulation study of the buoyant rise of bubbles at O(100) Reynolds number. Phys. Fluids 17, doi:093303.CrossRefGoogle Scholar
9. Figueroa-Espinoza, B. & Zenit, R. 2005 Clustering in high Re monodispersed bubbly flows. Phys. Fluids 17, 091701.CrossRefGoogle Scholar
10. Garnier, C., Lance, M. & Marié, J. L. 2002 Measurement of local flow characteristics in buoyancy-driven bubbly flow at high void fraction. Exp. Therm. Fluid Sci. 26, 811815.CrossRefGoogle Scholar
11. Hallez, Y. & Legendre, D. 2011 Interaction between two spherical bubbles rising in a viscous liquid. J. Fluid Mech. 673, 406431.CrossRefGoogle Scholar
12. Harper, J. F. 1997 Bubbles rising in line: why is the first approximation so bad? J. Fluid Mech. 351, 289300.CrossRefGoogle Scholar
13. Lance, M. & Bataille, J. 1991 Turbulence in the liquid phase of a uniform bubbly air water flow. J. Fluid Mech. 222, 95118.CrossRefGoogle Scholar
14. Legendre, D., Magnaudet, J. & Mougin, G. 2003 Hydrodynamic interactions between two spherical bubbles rising side by side in a viscous liquid. J. Fluid Mech. 497, 133166.CrossRefGoogle Scholar
15. Lin, T.-J., Reese, J., Hong, T. & Fan, L.-S. 1996 Quantitative analysis and computation of two-dimensional bubble columns. AIChE J. 42 (2), 301318.CrossRefGoogle Scholar
16. Martinez, M. J., Chehata, G. D., van Gils, D., Sun, C. & Lohse, D. 2010 On bubble clustering and energy spectra in pseudo-turbulence. J. Fluid Mech. 650, 287306.CrossRefGoogle Scholar
17. Martinez, M. J., Palacios-Morales, C. A. & Zenit, R. 2007 Measurements of pseudoturbulence intensity in monodispersed bubbly liquids for . Phys. Fluids 19, 103302.CrossRefGoogle Scholar
18. Riboux, G., Risso, F. & Legendre, D. 2010 Experimental characterization of the agitation generated by bubbles rising at high Reynolds number. J. Fluid Mech. 643, 509559.CrossRefGoogle Scholar
19. Risso, F. & Ellingsen, K. 2002 Velocity fluctuations in a homogeneous dilute dispersion of high-Reynolds-number rising bubbles. J. Fluid Mech. 453, 395410.CrossRefGoogle Scholar
20. Risso, F., Roig, V., Amoura, Z., Riboux, G. & Billet, A. M. 2008 Wake attenuation in large Reynolds number dispersed two-phase flows. Phil. Trans. R. Soc. Lond. A 366, 21772190.Google ScholarPubMed
21. Roig, V. & Larue de Tournemine, A. 2007 Measurement of interstitial velocity of homogeneous bubble flows at low to moderate void fraction. J. Fluid Mech. 572, 87110.CrossRefGoogle Scholar
22. Roig, V., Roudet, M., Risso, F. & Billet, A. M. 2012 Dynamics of a high-Reynolds-number bubble rising within a thin gap. J. Fluid Mech. (in press).CrossRefGoogle Scholar
23. Roudet, M. 2008 Hydrodynamique et transfert de masse autour dúne bulle confinée entre deux plaques. PhD of the University of Toulouse, France.Google Scholar
24. Roudet, M., Billet, A. M., Risso, F. & Roig, V. 2011 PIV with volume lighting in a narrow cell: an efficient method to measure large velocity fields of rapidly varying flows. Exp. Therm. Fluid Sci. 35 (6), 10301037.CrossRefGoogle Scholar
25. Sangani, A. S. & Didwania, A. K. 1993 Dynamic simulations of flows of bubbly liquids at large Reynolds numbers. J. Fluid Mech. 250, 307337.CrossRefGoogle Scholar
26. Smereka, P. 1993 On the motion of bubbles in a periodic box. J. Fluid Mech. 254, 79112.CrossRefGoogle Scholar
27. Spicka, P., Dias, M. M. & Lopes, J. C. B. 2001 Gas–liquid flow in a 2D column: comparison between experimental data and CFD modelling. Chem. Engng Sci. 56, 63676383.CrossRefGoogle Scholar
28. Takagi, S., Ogasawara, T. & Matsumoto, Y. 2008 The effects of surfactant on the multiscale structure of bubbly flows. Phil. Trans. R. Soc. Lond. A 366, 21172129.Google ScholarPubMed
29. Tsao, H.-K. & Koch, D. L. 1994 Collisions of slightly deformable, high Reynolds number bubbles with short-range repulsive forces. Phys. Fluids 6, 25912625.CrossRefGoogle Scholar
30. van Winjgaarden, L. 2005 Bubble velocities induced by trailing vortices behind neighbours. J. Fluid Mech. 541, 203229.CrossRefGoogle Scholar
31. Yuan, H. & Prosperetti, A. 1994 On the in-line motion of two spherical bubbles in a viscous fluid. J. Fluid Mech. 278, 325349.CrossRefGoogle Scholar
32. Yurkovetsky, Y. & Brady, J. F. 1996 Statistical mechanics of bubbly liquids. Phys. Fluids 8, 881895.CrossRefGoogle Scholar
33. Zenit, R., Koch, D. L. & Sangani, A. S. 2001 Measurements of the average properties of a suspension of bubbles rising in a vertical channel. J. Fluid Mech. 429, 307342.CrossRefGoogle Scholar