Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T06:33:43.478Z Has data issue: false hasContentIssue false

The impact of static and dynamic roughness elements on flow separation

Published online by Cambridge University Press:  29 September 2017

P. Servini
Affiliation:
Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK
F. T. Smith*
Affiliation:
Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK
A. P. Rothmayer
Affiliation:
Department of Aerospace Engineering, Iowa State University, Ames, IA 50011, USA
*
Email address for correspondence: f.smith@ucl.ac.uk

Abstract

The use of static or dynamic roughness elements has been shown in the past to delay the separation of a laminar boundary layer from a solid surface. Here, we examine analytically the effect of such elements on the local and breakaway separation points, corresponding respectively to the position of zero skin friction and presence of a singularity in the roughness region, for flow over a hump embedded within the boundary layer. Two types of roughness elements are studied: the first is small and placed near the point of vanishing skin friction; the second is larger and extends downstream. The forced flow solution is found as a sum of Fourier modes, reflecting the fixed frequency forcing of the dynamic roughness. Solutions for both the static and dynamic roughness show that the presence of the roughness element is able to move the separation points downstream, given an appropriate choice of roughness frequency, height, position and width. This choice is found to be qualitatively similar to that observed for leading-edge separation. Furthermore, for a negative static roughness a small region of separated flow forms at high roughness depth, although there is a critical depth above which boundary-layer breakaway moves suddenly upstream.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atik, H., Kim, C.-Y., Van Dommelen, L. L. & Walker, J. D. A. 2005 Boundary-layer separation control on a thin airfoil using local suction. J. Fluid Mech. 535, 415443.CrossRefGoogle Scholar
Braun, S. & Kluwick, A. 2002 The effect of three-dimensional obstacles on marginally separated laminar boundary layer flows. J. Fluid Mech. 460, 5782.Google Scholar
Braun, S. & Kluwick, A. 2004 Unsteady three-dimensional marginal separation caused by surface-mounted obstacles and/or local suction. J. Fluid Mech. 514, 121152.CrossRefGoogle Scholar
Braun, S. & Scheichl, S. 2014 On recent developments in marginal separation theory. Phil. Trans. R. Soc. Lond. A 372 (2020), 20130343.Google ScholarPubMed
Bushnell, D. M. & Moore, K. J. 1991 Drag reduction in nature. Annu. Rev. Fluid Mech. 23 (1), 6579.CrossRefGoogle Scholar
Chang, P. K. 1970 Separation of Flow. Pergamon Press.Google Scholar
Dearing, S. S., Lambert, S. & Morrison, J. F. 2007 Flow control with active dimples. Aeronaut. J. 111 (1125), 705714.CrossRefGoogle Scholar
Demauro, E. P., Dell’Orso, H., Zaremski, S., Leong, C. M. & Amitay, M. 2015 Control of laminar separation bubble on NACA 0009 airfoil using electroactive polymers. AIAA J. 53 (8), 22702279.CrossRefGoogle Scholar
Fish, F. E. & Lauder, G. V. 2006 Passive and active flow control by swimming fishes and mammals. Annu. Rev. Fluid Mech. 38, 193224.CrossRefGoogle Scholar
Goldstein, S. 1948 On laminar boundary-layer flow near a position of separation. Q. J. Mech. Appl. Maths 1 (1), 4369.CrossRefGoogle Scholar
Grager, T., Rothmayer, A. P., Huebsch, W. W. & Hu, H. 2012 Low Reynolds number stall suppression with dynamic roughness. In 6th AIAA Flow Control Conference, AIAA Paper 2012-2681, pp. 2528.Google Scholar
Gad-el-Hak, M. 2000 Flow Control: Passive, Active and Reactive Flow Management. Cambridge University Press.CrossRefGoogle Scholar
Hsiao, C.-T. & Pauley, L. L. 1994 Comparison of the triple-deck theory, interactive boundary layer method, and Navier–Stokes computation for marginal separation. Trans. ASME J. Fluids Engng 116, 2228.CrossRefGoogle Scholar
Huebsch, W. W. 2006 Two-dimensional simulation of dynamic surface roughness for aerodynamic flow control. J. Aircraft 43 (2), 353362.CrossRefGoogle Scholar
Huebsch, W. W., Gall, P. D., Hamburg, S. D. & Rothmayer, A. P. 2012 Dynamic roughness as a means of leading-edge separation flow control. J. Aircraft 49 (1), 108115.CrossRefGoogle Scholar
Lissaman, P. B. 1983 Low-Reynolds-number airfoils. Annu. Rev. Fluid Mech. 15 (1), 223239.Google Scholar
Modi, V. J. 1997 Moving surface boundary-layer control: a review. J. Fluids Struct. 11, 627663.Google Scholar
Prandtl, L. 1904 Uber flussigkeits bewegung bei sehr kleiner reibung. Verhaldlg III Intl Math. Kong 484491.Google Scholar
Pruessner, L. & Smith, F. T. 2015 Enhanced effects from tiny flexible in-wall blips and shear flow. J. Fluid Mech. 772, 1641.Google Scholar
Rothmayer, A. P. & Huebsch, W. W. 2011 On the modification of laminar boundary layers using unsteady surface actuation. In 6th AIAA Theoretical Fluid Mechanics Conference, AIAA Paper 2011-4016.Google Scholar
Rothmayer, A. P. & Huebsch, W. W. 2012 Flow about large unsteady two-dimensional humps in a boundary layer. In 42nd AIAA Fluid Dynamics Conference and Exhibit, AIAA Paper 2012-2949.Google Scholar
Ruban, A. I. 1981 Singular solution of boundary layer equations which can be extended continuously through the point of zero surface friction. Fluid Dyn. 16 (6), 835843.CrossRefGoogle Scholar
Ruban, A. I. 1982 Asymptotic theory of short separation regions on the leading edge of a slender airfoil. Fluid Dyn. 17 (1), 3341.Google Scholar
Saric, W., West, D., Tufts, M. & Reed, H.2015 Flight test experiments on discrete roughness element technologry for laminar flow control. AIAA Paper 2015-0539.Google Scholar
Schlichting, H. & Gersten, K. 2000 Boundary Layer Theory. Springer.Google Scholar
Smith, F. T. 1976a Flow through constricted or dilated pipes and channels: part 1. Q. J. Mech. Appl. Maths 29 (3), 343364.CrossRefGoogle Scholar
Smith, F. T. 1976b Flow through constricted or dilated pipes and channels: part 2. Q. J. Mech. Appl. Maths 29 (3), 365376.Google Scholar
Smith, F. T. 1982 Concerning dynamic stall. Aeronaut. Q. 33, 331352.Google Scholar
Smith, F. T., Brighton, P. W. M., Jackson, P. S. & Hunt, J. C. R. 1981 On boundary-layer flow past two-dimensional obstacles. J. Fluid Mech. 113, 123152.Google Scholar
Smith, F. T. & Daniels, P. G. 1981 Removal of Goldstein’s singularity at separation, in flow past obstacles in wall layers. J. Fluid Mech. 110, 137.Google Scholar
Stewartson, K. 1970 Is the singularity at separation removable? J. Fluid Mech. 44 (2), 347364.Google Scholar
Stewartson, K., Smith, F. T. & Kaups, K. 1982 Marginal separation. Stud. Appl. Maths 67, 4561.CrossRefGoogle Scholar
Sychev, V. V., Ruban, A. I., Sychev, V. V. & Korolev, G. L. 1998 Asymptotic Theory of Separated Flows. Cambridge University Press.CrossRefGoogle Scholar
Tani, I. 1969 Boundary-layer transition. Annu. Rev. Fluid Mech. 1 (1), 169196.CrossRefGoogle Scholar
Zametaev, V. B. 1986 Existence and nonuniqueness of local separation zones in viscous jets. Fluid Dyn. 21 (1), 3138.CrossRefGoogle Scholar