Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T19:45:16.077Z Has data issue: false hasContentIssue false

Inclined impact of drops

Published online by Cambridge University Press:  10 June 2020

Paula García-Geijo
Affiliation:
Área de Mecánica de Fluidos, Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, Avenida de los Descubrimientos s/n 41092, Sevilla, Spain
Guillaume Riboux
Affiliation:
Área de Mecánica de Fluidos, Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, Avenida de los Descubrimientos s/n 41092, Sevilla, Spain
José Manuel Gordillo*
Affiliation:
Área de Mecánica de Fluidos, Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, Avenida de los Descubrimientos s/n 41092, Sevilla, Spain
*
Email address for correspondence: jgordill@us.es

Abstract

Here we extend the results in Gordillo et al. (J. Fluid Mech., vol. 866, 2019, pp. 298–315), where the spreading of drops impacting perpendicularly a solid wall was analysed, to predict the time-varying flow field and the thickness of the liquid film created when a spherical drop of a low viscosity fluid, like water or ethanol, spreads over a smooth dry surface at arbitrary values of the angle formed between the drop impact direction and the substrate. Our theoretical results accurately predict the time evolving asymmetric shape of the border of the thin liquid film extending over the substrate during the initial instants of the drop spreading process. In addition, the particularization of the ordinary differential equations governing the unsteady flow when the rim velocity vanishes provides an algebraic equation for the asymmetric final shapes of the liquid stains remaining after the impact, valid for low values of the inclination angle. For larger values of the inclination angle, the final shape of the drop can be approximated by an ellipse whose major and minor semiaxes can also be calculated by making use of the present theory. The predicted final shapes agree with the observed remaining stains, excluding the fact that a liquid rivulet develops from the bottom part of the drop. The limitations of the present theory to describe the emergence of the rivulet are also discussed.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aboud, D. G. K. & Kietzig, A.-M. 2018 On the oblique impact dynamics of drops on superhydrophobic surfaces. Part I. Sliding length and maximum spreading diameter. Langmuir 34 (34), 98799888.CrossRefGoogle ScholarPubMed
Adam, C. D. 2012 Fundamental studies of bloodstain formation and characteristics. Forensic Sci. Intl 219 (1), 7687.CrossRefGoogle ScholarPubMed
Almohammadi, H. & Amirfazli, A. 2017a Asymmetric spreading of a drop upon impact onto a surface. Langmuir 33 (23), 59575964.CrossRefGoogle Scholar
Almohammadi, H. & Amirfazli, A. 2017b Understanding the drop impact on moving hydrophilic and hydrophobic surfaces. Soft Matt. 13, 20402053.CrossRefGoogle Scholar
Antonini, C., Villa, F. & Marengo, M. 2014 Oblique impacts of water drops onto hydrophobic and superhydrophobic surfaces: outcomes, timing, and rebound maps. Exp. Fluids 55, 1713.CrossRefGoogle Scholar
Bird, J. C., Tsai, S. S. H. & Stone, H. A. 2009 Inclined to splash: triggering and inhibiting a splash with tangential velocity. New J. Phys. 11 (6), 063017.CrossRefGoogle Scholar
Brodbeck, S. 2012 Introduction to bloodstain pattern analysis. J. Police Sci. Practice 2, 5157.Google Scholar
Buksh, S., Almohammadi, H., Marengo, M. & Amirfazli, A. 2019 Spreading of low-viscous liquids on a stationary and a moving surface. Exp. Fluids 60, 76.CrossRefGoogle Scholar
Cimpeanu, R. & Papageorgiou, D. T. 2018 Three-dimensional high speed drop impact onto solid surfaces at arbitrary angles. Intl J. Multiphase Flow 107, 192207.CrossRefGoogle Scholar
Clanet, C., Béguin, C., Richard, D. & Quéré, D. 2004 Maximal deformation of an impacting drop. J. Fluid Mech. 517, 199208.CrossRefGoogle Scholar
Eggers, J., Fontelos, M. A., Josserand, C. & Zaleski, S. 2010 Drop dynamics after impact on a solid wall: theory and simulations. Phys. Fluids 22, 062101.CrossRefGoogle Scholar
Gielen, M. V., Sleutel, P., Benschop, J., Riepen, M., Voronina, V., Visser, C. W., Lohse, D., Snoeijer, J. H., Versluis, M. & Gelderblom, H. 2017 Oblique drop impact onto a deep liquid pool. Phys. Rev. Fluids 2, 083602.Google Scholar
Gilet, T. & Bourouiba, L. 2018 Fluid fragmentation shapes rain-induced foliar disease transmission. J. R. Soc. Interface 12, 20141092.Google Scholar
Gordillo, J. M. & Riboux, G. 2019 A note on the aerodynamic splashing of droplets. J. Fluid Mech. 871, R3.CrossRefGoogle Scholar
Gordillo, J. M., Riboux, G. & Quintero, E. S. 2019 A theory on the spreading of impacting droplets. J. Fluid Mech. 866, 298315.CrossRefGoogle Scholar
Hao, J. & Green, S. I. 2017 Splash threshold of a droplet impacting a moving substrate. Phys. Fluids 29, 012103.CrossRefGoogle Scholar
Hao, J., Lu, J., Lee, L., Wu, Z., Hu, G. & Floryan, J. M. 2019 Droplet splashing on an inclined surface. Phys. Rev. Lett. 122, 054501.CrossRefGoogle Scholar
Josserand, C. & Thoroddsen, S. T. 2016 Drop impact on a solid surface. Annu. Rev. Fluid Mech. 48, 365391.CrossRefGoogle Scholar
Laan, N., de Bruin, K. G., Bartolo, D., Josserand, C. & Bonn, D. 2014 Maximum diameter of impacting liquid droplets. Phys. Rev. Appl. 2, 044018.CrossRefGoogle Scholar
Laan, N., de Bruin, K. G., Slenter, D., Wilhelm, J., Jermy, M. & Bonn, D. 2015 Bloodstain pattern analysis: implementation of a fluid dynamic model for position determination of victims. Sci. Rep. 5, 11461.Google ScholarPubMed
LeClear, S., LeClear, J., Abhijeet, Park, K.-C. & Choi, W. 2016 Drop impact on inclined superhydrophobic surfaces. J. Colloid Interface Sci. 461, 114121.CrossRefGoogle ScholarPubMed
Lee, J. B., Laan, N., de Bruin, K. G., Skantzaris, G., Shahidzadeh, N., Derome, D., Carmeliet, J. & Bonn, D. 2016 Universal rescaling of drop impact on smooth and rough surfaces. J. Fluid Mech. 786, R4.CrossRefGoogle Scholar
Lejeune, S. & Gilet, T. 2019 Drop impact close to the edge of an inclined substrate: liquid sheet formation and breakup. Phys. Rev. Fluids 4, 053601.CrossRefGoogle Scholar
Lejeune, S., Gilet, T. & Bourouiba, L. 2018 Edge effect: liquid sheet and droplets formed by drop impact close to an edge. Phys. Rev. Fluids 3, 083601.CrossRefGoogle Scholar
Mundo, C., Sommerfeld, M. & Tropea, C. 1995 Droplet-wall collisions: experimental studies of the deformation and breakup process. Intl J. Multiphase Flow 21, 151173.CrossRefGoogle Scholar
Quetzeri-Santiago, M. A., Yokoi, K., Castrejón-Pita, A. A. & Castrejón-Pita, J. R. 2019 Role of the dynamic contact angle on splashing. Phys. Rev. Lett. 122, 228001.CrossRefGoogle ScholarPubMed
Quintero, E. S., Riboux, G. & Gordillo, J. M. 2019 Splashing of droplets impacting superhydrophobic substrates. J. Fluid Mech. 870, 175188.CrossRefGoogle Scholar
Raman, K. A. 2019 Normal and oblique droplet impingement dynamics on moving dry walls. Phys. Rev. E 99, 053108.Google ScholarPubMed
Regulagadda, K., Bakshi, S. & Das, S. K. 2018 Droplet ski-jumping on an inclined macro-textured superhydrophobic surface. Appl. Phys. Lett. 113 (10), 103702.CrossRefGoogle Scholar
Riboux, G. & Gordillo, J. M. 2014 Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing. Phys. Rev. Lett. 113, 024507.Google Scholar
Riboux, G. & Gordillo, J. M. 2015 The diameters and velocities of the droplets ejected after splashing. J. Fluid Mech. 772, 630648.CrossRefGoogle Scholar
Riboux, G. & Gordillo, J. M. 2016 Maximum drop radius and critical weber number for splashing in the dynamical leidenfrost regime. J. Fluid Mech. 803, 516527.CrossRefGoogle Scholar
Riboux, G. & Gordillo, J. M. 2017 Boundary-layer effects in droplet splashing. Phys. Rev. E 96, 013105.Google ScholarPubMed
Roisman, I. V. 2009 Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film. Phys. Fluids 21, 052104.CrossRefGoogle Scholar
Roisman, I. V., Berberović, E. & Tropea, C. 2009 Inertia dominated drop collisions. I. On the universal flow in the lamella. Phys. Fluids 21, 052103.CrossRefGoogle Scholar
Roisman, I. V., Rioboo, R. & Tropea, C. 2002 Normal impact of a liquid drop on a dry surface: model for spreading and receding. Proc. R. Soc. Lond. A 458 (2022), 14111430.CrossRefGoogle Scholar
Rozhkov, A., Prunet-Foch, B. & Vignes-Adler, M. 2002 Impact of water drops on small targets. Phys. Fluids 14 (10), 34853501.CrossRefGoogle Scholar
Sikalo, T. C. & Ganic, E. N. 2005 Impact of droplets onto inclined surfaces. J. Colloid Interface Sci. 286 (2), 661669.CrossRefGoogle ScholarPubMed
Taylor, G. I. 1959 The dynamics of thin sheets of fluid. III. Desintegration of fluid sheets. Proc. R. Soc. Lond. A 253, 1274.Google Scholar
Villermaux, E. & Bossa, B. 2011 Drop fragmentation on impact. J. Fluid Mech. 668, 412435.CrossRefGoogle Scholar
Visser, C. W., Frommhold, P. E., Wildeman, S., Mettin, R., Lohse, D. & Sun, C. 2015 Dynamics of high-speed micro-drop impact: numerical simulations and experiments at frame-to-frame times below 100 ns. Soft Matt. 11, 17081722.CrossRefGoogle ScholarPubMed
Wildeman, S., Visser, C. W., Sun, C. & Lohse, D. 2016 On the spreading of impacting drops. J. Fluid Mech. 805, 636655.CrossRefGoogle Scholar
Xu, L., Zhang, W. W. & Nagel, S. R. 2005 Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94, 184505.CrossRefGoogle ScholarPubMed
Yeong, Y. H., Burton, J., Loth, E. & Bayer, I. S. 2014 Drop impact and rebound dynamics on an inclined superhydrophobic surface. Langmuir 30 (40), 1202712038.CrossRefGoogle Scholar

García-Geijo et al. supplementary movie 1

Experimental images corresponding to the top row in figure 4, with inclination angle 15 degrees. Full experimental details are provided in the supplementary material pdf file.

Download García-Geijo et al. supplementary movie 1(Video)
Video 1.5 MB

García-Geijo et al. supplementary movie 2

As movie 1 but corresponding to the second row in figure 4, with inclination angle 30 degrees.

Download García-Geijo et al. supplementary movie 2(Video)
Video 1.4 MB

García-Geijo et al. supplementary movie 3

As movie 1 but corresponding to the third row in figure 4, with inclination angle 45 degrees.

Download García-Geijo et al. supplementary movie 3(Video)
Video 1.5 MB

García-Geijo et al. supplementary movie 4

As movie 1 but corresponding to the bottom row in figure 4, with inclination angle 60 degrees.

Download García-Geijo et al. supplementary movie 4(Video)
Video 1.3 MB
Supplementary material: PDF

García-Geijo et al. supplementary material

Supplementary data

Download García-Geijo et al. supplementary material(PDF)
PDF 36.7 KB