Article contents
Inequalities and variational principles for turbulent transport
Published online by Cambridge University Press: 19 April 2006
Abstract
Two inequalities are proposed for the purpose of bounding from below the mean shear U′o(z) in turbulent channel flow. The first of these inequalities pertains to the energetics of the boundary layer, and the second pertains to the logarithmic form of the asymptote to Uo. These inequalities imply a maximum value of von Kármán's constant, the numerical value of which lies between the measurements of Laufer (1951) and the value obtained from bulk discharge measurements in a pipe. The formalism, which contains no adjustable parameters, is then applied to the turbulent thermal convection problem, and a lower bound for the mean temperature $\overline{T}_o(z)$ is obtained. The minimum value of the latter at large distances from the boundary is in fair agreement with Townsend's (1959) measurements. Although the proposed inequalities have not been deduced from the equations of motion, they provide facts which may be useful in the search for new variational formulations of theturbulent transport problem.
- Type
- Research Article
- Information
- Copyright
- © 1979 Cambridge University Press
References
- 9
- Cited by