Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T06:53:09.357Z Has data issue: false hasContentIssue false

The influence of a mean magnetic field on three-dimensional magnetohydrodynamic turbulence

Published online by Cambridge University Press:  26 April 2006

Sean Oughton
Affiliation:
Department of Mathematical and Computational Sciences, The University, St Andrews, KY16 9SS, UK
Eric R. Priest
Affiliation:
Department of Mathematical and Computational Sciences, The University, St Andrews, KY16 9SS, UK
William H. Matthaeus
Affiliation:
Bartol Research Institute, University of Delaware, Newark, DE 19716, USA

Abstract

Building on results from two-dimensional magnetohydrodynamic (MHD) turbulence (Shebalin, Matthaeus & Montgomery 1983), the development of anisotropic states from initially isotropic ones is investigated numerically for fully three-dimensional incompressible MHD turbulence. It is found that when an external d.c. magnetic field (B0) is imposed on viscous and resistive MHD systems, excitations are preferentially transferred to modes with wavevectors perpendicular to B0). The anisotropy increases with increasing mechanical and magnetic Reynolds numbers, and also with increasing wavenumber. The tendency of B0 to inhibit development of turbulence is also examined.

Type
Research Article
Copyright
© 1994 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Biskamp, D. & Welter, H. 1989 Dynamics of decaying two-dimensional magnetohydrodynamics turbulence. Phys. Fluids B 1, 1964.Google Scholar
Blackman, R. B. & Tukey, J. W. 1958 The Measurement of Power Spectra. Dover.
Braginskii, S. I. 1965 Transport processes in a plasma. Rev. Plasma Phys. 1, 205.Google Scholar
Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 1988 Spectral Methods in Fluid Mechanics. Springer Series in Computational Physics.
Cowling, T. G. 1957 Magnetohydrodynamics., Interscience.
Dobrowolny, M., Mangeney, A. & Veltri, P. 1980 Fully developed anisotropic hydromagnetic turbulence in interplanetary space. Phys. Rev. Lett. 45, 144.Google Scholar
Domaradzki, J. A., Rogallo, R. S. & Brachet, M. E. 1993 An analysis of subgrid-scale interactions in numerically simulated isotropic turbulence. Phys. Fluids A 5, 1747.Google Scholar
Frisch, U., Pouquet, A., Léorat, J. & Mazure, A. 1975 Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence. J. Fluid Mech. 68, 769.Google Scholar
Frisch, U., Pouquet, A., Sulem, P.-L. & Meneguzzi, M. 1983 The dynamics of two-dimensional ideal mhd. J. Méc. Théor. Appl. 216, 191.Google Scholar
Gottlieb, D. & Orszag, S. A. 1977 Numerical Analysis of Spectral Methods: Theory and Applications. SIAM.
Grappin, R., Frisch, U., Léorat, J. & Pouquet, A. 1982 Alfvénic fluctuations as asymptotic states of MHD turbulence. Astron. Astrophys. 105, 6.Google Scholar
Hollweg, J. V. 1985 Viscosity in a magnetized plasma: physical interpretation. J. Geophys. Res. 90, 7620.Google Scholar
Hollweg, J. V. 1986 Viscosity and the Chew-Goldberger-Low equations in the solar corona. Astrophys. J. 306, 730.Google Scholar
Hossain, M., Vahala, G. & Montgomery, D. 1985 Forced magnetodynamic turbulence in a uniform-external magnetic field. Phys. Fluids 28, 3074.Google Scholar
Klein, L. W., Roberts, D. A. & Goldstein, M. L. 1991 Anisotropy and minimum variance directions of solar wind fluctuations in the outer heliosphere. J. Geophys. Res. 96, 3779.Google Scholar
Kraichnan, R. H. 1965 Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids 8, 1385.Google Scholar
Kraichnan, R. H. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 1417.Google Scholar
Kraichnan, R. H. 1973 Helical turbulence and absolute equilibrium. J. Fluid Mech. 59, 745.Google Scholar
Kraichnan, R. H. & Montgomery, D. C. 1980 Two-dimensional turbulence. Rep. Prog. Phys. 43, 547.Google Scholar
Matthaeus, W. H. & Goldstein, M. L. 1982 Measurement of the rugged invariants of magnetohydrodynamic turbulence in the solar wind. J. Geophys. Res. 87, 6011.Google Scholar
Matthaeus, W. H. & Lamkin, S. L. 1986 Turbulent magnetic reconnection. Phys. Fluids 29, 2513.Google Scholar
Matthaeus, W. H. & Montgomery, D. 1980 Selective decay hypothesis at high mechanical and magnetic Reynolds numbers. Ann. NY Acad. Sci. 357, 203.Google Scholar
Moffatt, H. K. 1967 On the suppression of turbulence by a uniform magnetic field. J. Fluid Mech. 28, 571.Google Scholar
Montgomery, D. C. 1982 Major disruption, inverse cascades, and the Strauss equations. Physica Scripta T1/2, 83.Google Scholar
Orszag, S. A. 1971 Numerical simulation of incompressible flows within simple boundaries: I. Galerkin (spectral) representations. Stud. Appl. Maths 50, 293.Google Scholar
Parker, E. N. 1958 Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 123, 644.Google Scholar
Parker, E. N. 1979 Cosmical Magnetic Fields: Their Origin and Activity. Oxford University Press.
Patterson, G. S. & Orszag, S. A. 1971 Spectral calculations of isotropic turbulence: efficient removal of aliasing interactions. Phys. Fluids 14, 2538.Google Scholar
Pouquet, A., Frisch, U. & Léorat, J. 1976 Strong mhd helical turbulence and the nonlinear dynamo effect. J. Fluid Mech. 77, 321.Google Scholar
Pouquet, A., Meneguzzi, M. & Frisch, U. 1986 Growth of correlations in magnetohydrodynamic turbulence. Phys. Rev. A 33, 4266.Google Scholar
Pouquet, A. & Patterson, G. S. 1978 Numerical simulation of helical magnetohydrodynamic turbulence. J. Fluid Mech. 85, 305.Google Scholar
Roberts, D. A., Goldstein, M. L., Klein, L. W. & Matthaeus, W. H. 1987a Origin and evolution of fluctuations in the solar wind: Helios observations and Helios-Voyager comparisons. J. Geophys. Res. 92, 12023.Google Scholar
Roberts, D. A., Klein, L. W., Goldstein, M. L. & Matthaeus, W. H. 1987b The nature and evolution of magnetohydrodynamic fluctuations in the solar wind: Voyager observations. J. Geophys. Res. 92, 11021.Google Scholar
Shebalin, J. V., Matthaeus, W. H. & Montgomery, D. 1983 Anisotropy in mhd turbulence due to a mean magnetic field. J. Plasma Phys. 29, 525 (referred to herein as SMM).Google Scholar
Strauss, H. R. 1976 Nonlinear, three-dimensional magnetohydrodynamics of noncircular tokamaks. Phys. Fluids 19, 134.Google Scholar
Stribling, T. & Matthaeus, W. H. 1990 Statistical properties of ideal three-dimensional magnetohydrodynamics. Phys. Fluids B 2, 1979.Google Scholar
Stribling, T. & Matthaeus, W. H. 1991 Relaxation processes in a low order three-dimensional magnetohydrodynamics model. Phys. Fluids B 3, 1848.Google Scholar
Stribling, T., Matthaeus, W. H. & Ghosh, S. 1994a Nonlinear decay of magnetic helicity in magnetohydrodynamics with a mean magnetic field. J. Geophys. Res. 99, 2567.Google Scholar
Stribling, T., Matthaeus, W. H. & Oughton, S. 1994b Magnetic helicity in magnetohydrodynamic turbulence with a mean magnetic field. Phys. Plasmas (in press).Google Scholar
Stribling, W. T. 1991 Relaxation processes in turbulent magnetohydrodynamic decay. PhD thesis, University of Delaware.
Ting, A. C., Matthaeus, W. H. & Montgomery, D. 1986 Turbulent relaxation processes in magnetohydrodynamics. Phys. Fluids 29 3261.Google Scholar
Zank, G. P. & Matthaeus, W. H. 1992a The equations of reduced magnetohydrodynamics. J. Plasma Phys. 48, 85.Google Scholar
Zank, G. P. & Matthaeus, W. H. 1992b Waves and turbulence in the solar wind. J. Geophys. Res. 97, 17189.Google Scholar
Zank, G. P. & Matthaeus, W. H. 1993 Nearly incompressible fluids II: Magnetohydrodynamics, turbulence, and waves. Phys. Fluids A 5, 257.Google Scholar