Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T06:27:46.514Z Has data issue: false hasContentIssue false

The influence of buoyancy on turbulent transport

Published online by Cambridge University Press:  12 April 2006

John L. Lumley
Affiliation:
The Pennyslvania State University, University Park Present address: Cornell University, Ithaca, New York 14853.
Otto Zeman
Affiliation:
The Pennyslvania State University, University Park Present address: NOAA Wave Propagation Laboratory, Boulder, Colorado 80309.
J. Siess
Affiliation:
établissement Principal, Service Hydrographique et Océanographique de la Marine, Brest, France

Abstract

Turbulent transport of fluctuating turbulent energy, turbulent momentum flux, temperature variance, turbulent heat flux, etc. in the upper part of the atmospheric boundary layer is usually dominated by buoyant transport. This transport is responsible for the erosion of the overlying stably stratified region, resulting in progressive thickening of the mixed layer. It is easy to show that a classical gradient transport model for the transport will not work, because it transports energy in the wrong direction. On the other hand, application of the eddy-damped quasi-Gaussian approximation to the equations for the third moments results in a transport model which predicts realistic inversion rise rates and heat-flux profiles. This is also a gradient transport model, but like molecular transport in solutions, a flux of one quantity depends on gradients of all relevant quantities. Transport coefficients are modified by the heat flux, so that the vertical transport is severely reduced near the inversion base. A simple Lagrangian model of transport of an indelible scalar in a stratified flow indicates that the form of the modified transport coefficients results from a marked anisotropic change in the Lagrangian time scale in stratification.

Type
Research Article
Copyright
© 1978 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

André, J. C., De moor, G., LACARRÈRE, P. & Du vachat, R. 1976a J. Atmos. Sci. 33, 476.
André, J. C., De moor, G., LACARRÈRE, P. & Du vachat, R. 1976b J. Atmos. Sci. 33, 482.
Batchelor, G. K. & Proudman, I. 1954 Quart, J. Mech. Appl. Math. 7, 83.
Bird, R. B., Curtiss, C. F. & Hirschfelder, J. O. 1955 Chem. Engng Prog. Symp. Ser. 51, 69.
Chou, P. Y. 1945 Quart. Appl. Math. 3, 31.
Corrsin, S. 1974 Adv. in Geophys. A 18, 25.
Deardorff, J. W. 1966 J. Atmos. Sci. 23, 503.
Deardorff, J. W. 1972 J. Geophys. Res. 77, 5900. 5904.
Donaldson, C. Dup. 1972 A.I.A.A. J. 10, 4.
Frenkiel, F. N. & Klebanoff P. S., 1967a Phys. Fluids 10, 507.
Frenkiel, F. N. & Klebanoff, P. S. 1967b Phys. Fluids 10, 1737.
Gence, J. N. 1977 Turbulence homogène associée à un effet de gravité. Thèse de Docteur Ingénieur, Université Claude Bernard, Lyon, France.
Hanjalić, K. & Launder, B. E. 1972 J. Fluid Mech. 52, 609.
Herring, J. 1965 Phys. Fluids 8, 2219.
Jeffreys, H. & Jeffreys, B. S. 1956 Methods of Mathematical Physics. Cambridge University Press.
Lenschow, D. H. 1970 J. Appl. Met. 9, 874.
Lenschow, D. H. 1974 J. Atmos. Sci. 31, 465.
Lenschow, D. H. & Johnson, W. B. 1968 J. Appl. Met. 7, 79.
Lumley, J. L. 1975 Lecture notes for series Prediction Methods for Turbulent Flows: Introduction. Von Kármán Inst., Rhode-St-Genèse, Belgium.
Lumley, J. L. & Panofsky, H. A. 1964 The Structure of Atmospheric Turbulence. Interscience.
Lumley, J. L. & KHAJEH-NOURI, B. 1974 Adv. in Geophys. A 18, 169.
Lumley, J. L. & Newman, G. R. 1977 J. Fluid Mech. 82, 161.
Monin, A. S. & Yaglom, A. M. 1971 Statistical Fluid Mechanics, vol. 1. M.I.T. Press.
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, vol. 2. M.I.T. Press.
Newman, G., Launder, B. E. & Lumley, J. L. 1977 Modeling the decay of temperature fluctuations in a homogeneous turbulence. To be submitted for publication.
Orszag, S. 1970 J. Fluid Mech. 41, 363.
Priestley, C. H. B. & Swinbank, W. C. 1947 Proc. Roy. Soc. A 189, 543.
Schumann, U. 1976 Realizability of Reynolds stress turbulence models. Submitted to Phys. Fluids.Google Scholar
Telford, J. L. & Warner, J. 1964 J. Atmos. Sci. 43, 539.
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. M.I.T. Press.
Warhaft, Z. & Lumley, J. L. 1977 An experimental study of the decay of temperature fluctuations in grid-generated turbulence. Submitted to J. Fluid Mech.Google Scholar
Willis, G. E. & Deardorff, J. W. 1974 J. Atmos. Sci. 31, 1297.
Zeman, O. 1975 The dynamics of entrainment in the planetary boundary layer: a study in turbulence modeling and parameterization. Ph.D. thesis, The Pennsylvania State University.
Zeman, O. & Lumley, J. L. 1976 J. Atmos. Sci. 33, 1974.