Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-14T06:37:30.278Z Has data issue: false hasContentIssue false

Influence of interface pollution on the linear stability of a rotating flow

Published online by Cambridge University Press:  17 August 2020

Antoine Faugaret
Affiliation:
Collège Doctoral, Sorbonne Université, F-75005Paris, France Université Paris-Saclay, CNRS, LIMSI, 91400Orsay, France
Yohann Duguet
Affiliation:
Université Paris-Saclay, CNRS, LIMSI, 91400Orsay, France
Yann Fraigneau
Affiliation:
Université Paris-Saclay, CNRS, LIMSI, 91400Orsay, France
Laurent Martin Witkowski*
Affiliation:
Université Paris-Saclay, CNRS, LIMSI, 91400Orsay, France Faculté des Sciences et Ingénierie, UFR d'Ingénierie, Sorbonne Université, F-75005Paris, France
*
Email address for correspondence: laurent.martin_witkowski@sorbonne-universite.fr

Abstract

The boundary conditions at a liquid–gas interface can be modified by the presence of pollutants. This can in turn affect the stability of the associated flow. We consider this issue in the case of a simple open cylindrical cavity flow where a liquid is set in motion by the rotation of the bottom. The problem is addressed using an experimental set-up, a linear stability code and direct numerical simulation. A robust mismatch between numerical and experimental predictions of the onset of instability is found. We model the possible effect of unidentified pollutants at the interface using an advection–diffusion equation and a closure equation linking the surface tension to the superficial pollutant concentration. The chosen closure is inspired by studies of free-surface flows with surfactants. Numerical stability analysis reveals that the base flow and its linear stability threshold are strongly affected by the addition of pollutants. Pollutants tend to decrease the critical Reynolds number; however, the nonlinear dynamics is less rich than without pollutants. For sufficiently high pollution levels, the most unstable mode belongs to a different family, in agreement with experimental findings.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bandi, M. M., Akella, V. S., Singh, D. K., Singh, R. S. & Mandre, S. 2017 Hydrodynamic signatures of stationary Marangoni-driven surfactant transport. Phys. Rev. Lett. 119 (26), 264501.10.1103/PhysRevLett.119.264501CrossRefGoogle ScholarPubMed
Cheng, N. S. 2008 Formula for the viscosity of a glycerol-water mixture. Ind. Engng Chem. Res. 47 (9), 32853288.10.1021/ie071349zCrossRefGoogle Scholar
Cogan, S. J., Ryan, K. & Sheard, G. J. 2011 Symmetry breaking and instability mechanisms in medium depth torsionally open cylinder flows. J. Fluid Mech. 672, 521544.10.1017/S0022112010006129CrossRefGoogle Scholar
Daube, O. 1991 Numerical simulation of axisymmetric vortex breakdown in a closed cylinder. In Vortex Dynamics and Vortex Methods (ed. Anderson, C. R. & Greengard, C.), Lectures in Applied Mathematics, vol. 28, pp. 131152. American Mathematical Society.Google Scholar
Duguet, Y., Scott, J. F. & Le Penven, L. 2005 Instability inside a rotating gas cylinder subject to axial periodic strain. Phys. Fluids 17 (11), 114103.10.1063/1.2130746CrossRefGoogle Scholar
Hirsa, A. H., Lopez, J. M. & Miraghaie, R. 2001 Measurement and computation of hydrodynamic coupling at an air/water interface with an insoluble monolayer. J. Fluid Mech. 443, 271292.10.1017/S0022112001005262CrossRefGoogle Scholar
Hirsa, A. H., Lopez, J. M. & Miraghaie, R. 2002 a Determination of surface shear viscosity via deep-channel flow with inertia. J. Fluid Mech. 470, 135149.10.1017/S002211200200191XCrossRefGoogle Scholar
Hirsa, A. H., Lopez, J. M. & Miraghaie, R. 2002 b Symmetry breaking to a rotating wave in a lid-driven cylinder with a free surface: experimental observation. Phys. Fluids 14 (6), 2932.10.1063/1.1471912CrossRefGoogle Scholar
Huisman, S. G., van Gils, D. P. M. & Sun, C. 2012 Applying laser Doppler anemometry inside a Taylor–Couette geometry using a ray-tracer to correct for curvature effects. Eur. J. Mech. B/Fluids 36, 115119.10.1016/j.euromechflu.2012.03.013CrossRefGoogle Scholar
Hyun, J. M. 1985 Flow in an open tank with a free surface driven by the spinning bottom. J. Fluids Engng 107 (4), 495499.10.1115/1.3242519CrossRefGoogle Scholar
Iga, K., Yokota, S., Watanabe, S., Ikeda, T., Niino, H. & Misawa, N. 2014 Various phenomena on a water vortex in a cylindrical tank over a rotating bottom. Fluid Dyn. Res. 46 (3), 031409.CrossRefGoogle Scholar
Iwatsu, R. 2004 Analysis of flows in a cylindrical container with rotating bottom and top underformable free surface. JSME Intl J. 47 (3), 549556.CrossRefGoogle Scholar
Jansson, T. R. N., Haspang, M. P., Jensen, K. H., Hersen, P. & Bohr, T. 2006 Polygons on a rotating fluid surface. Phys. Rev. Lett. 96 (17), 174502.10.1103/PhysRevLett.96.174502CrossRefGoogle ScholarPubMed
Kahouadji, L., Houchens, B. C. & Martin Witkowski, L. 2011 Thermocapillary instabilities in a laterally heated liquid bridge with end wall rotation. Phys. Fluids 23 (10), 104104.CrossRefGoogle Scholar
Kahouadji, L., Martin Witkowski, L. & Le Quéré, P. 2010 Seuils de stabilité pour un écoulement à surface libre engendré dans une cavité cylindrique tournante à petit rapport de forme. Mécanique et Industries 11 (5), 339344.CrossRefGoogle Scholar
Kwan, Y. Y., Park, J. & Shen, J. 2010 A mathematical and numerical study of incompressible flows with a surfactant monolayer. Discrete Continuous Dyn. Syst. 28 (1), 181197.10.3934/dcds.2010.28.181CrossRefGoogle Scholar
Lopez, J. M. & Chen, J. 1998 Coupling between a viscoelastic gas/liquid interface and swirling vortex flow. J. Fluids Engng 120 (4), 655661.10.1115/1.2820718CrossRefGoogle Scholar
Lopez, J. M. & Hirsa, A. 2000 Surfactant-influenced gas-liquid interfaces: nonlinear equation of state and finite surface viscosities. J. Colloid Interface Sci. 229 (2), 575583.10.1006/jcis.2000.7025CrossRefGoogle ScholarPubMed
Lopez, J. M., Marques, F., Hirsa, A. H. & Miraghaie, R. 2004 Symmetry breaking in free-surface cylinder flows. J. Fluid Mech. 502, 99126.10.1017/S0022112003007481CrossRefGoogle Scholar
Magnaudet, J. & Eames, I. 2000 The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annu. Rev. Fluid Mech. 32 (1), 659708.CrossRefGoogle Scholar
Martín, E. & Vega, J. M. 2006 The effect of surface contamination on the drift instability of standing Faraday waves. J. Fluid Mech. 546, 203225.CrossRefGoogle Scholar
Peaudecerf, F. J., Landel, J. R., Goldstein, R. E. & Luzzatto-Fegiz, P. 2017 Traces of surfactants can severely limit the drag reduction of superhydrophobic surfaces. Proc. Natl Acad. Sci. 114 (28), 72547259.CrossRefGoogle ScholarPubMed
Ponce-Torres, A. & Vega, E. J. 2016 The effects of ambient impurities on the surface tension. EPJ Web Conf. 114, 02098.CrossRefGoogle Scholar
Poncet, S. & Chauve, M. P. 2007 Shear-layer instability in a rotating system. J. Flow Visual. Image Process. 14 (1), 85105.CrossRefGoogle Scholar
Rastello, M., Marié, J. L. & Lance, M. 2017 Clean versus contaminated bubbles in a solid-body rotating flow. J. Fluid Mech. 831, 592617.CrossRefGoogle Scholar
Scriven, L. E. 1960 Dynamics of a fluid interface: equation of motion for Newtonian surface fluids. Chem. Engng Sci. 12 (2), 98108.CrossRefGoogle Scholar
Serre, E. & Bontoux, P. 2007 Vortex breakdown in a cylinder with a rotating bottom and a flat stress-free surface. Intl J. Heat Fluid Flow 28 (2), 229248.CrossRefGoogle Scholar
Serre, E., Tuliszka-Sznitko, E. & Bontoux, P. 2004 Coupled numerical and theoretical study of the flow transition between a rotating and a stationary disk. Phys. Fluids 16 (3), 688706.CrossRefGoogle Scholar
Spohn, A. & Daube, O. 1991 Recirculating flows in a cylindrical tank. In Proceedings of the 5th International Conference on Computational Methods and Experimental Measurement (ed. Sousa, A., Brebbia, C. A. & Carlomagno, G. M.), pp. 155166. Elsevier.Google Scholar
Stewartson, K. 1957 On almost rigid rotations. J. Fluid Mech. 3, 1726.CrossRefGoogle Scholar
Stone, H. 1990 A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming surface. Phys. Fluids 2 (1), 111112.CrossRefGoogle Scholar
Suzuki, T., Iima, M. & Hayase, Y. 2006 Surface switching of rotating fluid in a cylinder. Phys. Fluids 18 (10), 101701.CrossRefGoogle Scholar
Tasaka, Y. & Iima, M. 2009 Flow transitions in the surface switching of rotating fluid. J. Fluid Mech. 636, 475484.10.1017/S0022112009991005CrossRefGoogle Scholar
Tophøj, L., Mougel, J., Bohr, T. & Fabre, D. 2013 Rotating polygon instability of a swirling free surface flow. Phys. Rev. Lett. 110 (19), 194502.CrossRefGoogle ScholarPubMed
Vatistas, G. H., Abderrahmane, H. A. & Siddiqui, M. H. K. 2008 Experimental confirmation of Kelvin's equilibria. Phys. Rev. Lett. 100 (17), 174503.CrossRefGoogle ScholarPubMed
Vatistas, G. H., Wang, J. & Lin, S. 1992 Experiments on waves induced in the hollow core of vortices. Exp. Fluids 13 (6), 377385.CrossRefGoogle Scholar
Yang, W., Delbende, I., Fraigneau, Y. & Martin Witkowski, L. 2019 Axisymmetric rotating flow with free surface in a cylindrical tank. J. Fluid Mech. 861, 796814.10.1017/jfm.2018.929CrossRefGoogle Scholar
Yang, W., Delbende, I., Fraigneau, Y. & Martin Witkowski, L. 2020 Large axisymmetric surface deformation and dewetting in the flow above a rotating disk in a cylindrical tank: spin-up and permanent regimes. Phys. Rev. Fluids 5 (4), 044801.CrossRefGoogle Scholar
Young, D. L., Sheen, H. J. & Hwu, T. Y. 1995 Period-doubling route to chaos for a swirling flow in an open cylindrical container with a rotating disk. Exp. Fluids 18 (5), 389396.CrossRefGoogle Scholar