Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-15T01:40:14.766Z Has data issue: false hasContentIssue false

Influence of internal viscosity on the large deformation and buckling of a spherical capsule in a simple shear flow

Published online by Cambridge University Press:  24 February 2011

É. FOESSEL
Affiliation:
École Polytechnique, 91128 Palaiseau, France
J. WALTER
Affiliation:
Laboratoire de Biomécanique et Bioingénierie (UMR CNRS 6600), Université de Technologie de Compiègne, BP 20529, 60205 Compiègne, France
A.-V. SALSAC
Affiliation:
Laboratoire de Biomécanique et Bioingénierie (UMR CNRS 6600), Université de Technologie de Compiègne, BP 20529, 60205 Compiègne, France
D. BARTHÈS-BIESEL*
Affiliation:
Laboratoire de Biomécanique et Bioingénierie (UMR CNRS 6600), Université de Technologie de Compiègne, BP 20529, 60205 Compiègne, France
*
Email address for correspondence: dbb@utc.fr

Abstract

The motion and deformation of a spherical elastic capsule freely suspended in a simple shear flow is studied numerically, focusing on the effect of the internal-to-external viscosity ratio. The three-dimensional fluid–structure interactions are modelled coupling a boundary integral method (for the internal and external fluid motion) with a finite element method (for the membrane deformation). For low viscosity ratios, the internal viscosity affect the capsule deformation. Conversely, for large viscosity ratios, the slowing effect of the internal motion lowers the overall capsule deformation; the deformation is asymptotically independent of the flow strength and membrane behaviour. An important result is that increasing the internal viscosity leads to membrane compression and possibly buckling. Above a critical value of the viscosity ratio, compression zones are found on the capsule membrane for all flow strengths. This shows that very viscous capsules tend to buckle easily.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bagchi, P. & Kalluri, R. M. 2010 Rheology of a dilute suspension of liquid-filled elastic capsules. Phys. Rev. E 81, 056320.CrossRefGoogle ScholarPubMed
Barthès-Biesel, D., Diaz, A. & Dhenin, E. 2002 Effect of constitutive laws for two dimensional membranes on flow-induced capsule deformation. J. Fluid Mech. 460, 211222.Google Scholar
Barthès-Biesel, D. & Rallison, J. M. 1981 The time-dependent deformation of a capsule freely suspended in a linear shear flow. J. Fluid Mech. 113, 251267.Google Scholar
Barthès-Biesel, D., Walter, J. & Salsac, A.-V. 2010 Flow-induced deformation of artificial capsules. In Computational Hydrodynamics of Capsules and Biological Cells. pp. 3570. Taylor & Francis.Google Scholar
Chang, K. S. & Olbricht, W. L. 1993 Experimental studies of the deformation and breakup of a synthetic capsule in steady and unsteady simple shear flow. J. Fluid Mech. 250, 609633.Google Scholar
Doddi, S. K. & Bagchi, P. 2008 Lateral migration of a capsule in a plane Poiseuille flow in a channel. Intl J. Multiphase Flow 34 (10), 966986.Google Scholar
Keller, S. R. & Skalak, R. 1982 Motion of a tank-treading ellipsoidal particle in a shear flow. J. Fluid Mech. 120, 2747.Google Scholar
Lac, É., Barthès-Biesel, D., Pelekasis, N. A. & Tsamopoulos, J. 2004 Spherical capsules in three-dimensional unbounded Stokes flow: effect of the membrane constitutive law and onset of buckling. J. Fluid Mech. 516, 303334.Google Scholar
Li, X. & Sarkar, K. 2008 Front tracking simulation of deformation and buckling instability of a liquid capsule enclosed by an elastic membrane. J. Comput. Phys. 227 (10), 49985018.Google Scholar
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.Google Scholar
Rallison, J. M. 1980 Note on the time-dependent deformation of a viscous drop which is almost spherical. J. Fluid Mech. 98, 625633.Google Scholar
Ramanujan, S. & Pozrikidis, C. 1998 Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of capsule viscosity. J. Fluid Mech. 361, 117143.Google Scholar
Skalak, R., Tozeren, A., Zarda, R. P. & Chien, S. 1973 Strain energy function of red blood cell membranes. Biophys. J. 13, 245264.Google Scholar
Walter, A., Rehage, H. & Leonhard, H. 2000 Shear-induced deformation of polyamide microcapsules. Colloid Polym. Sci. 278, 169175.Google Scholar
Walter, J., Salsac, A.-V., Barthès-Biesel, D. & Le Tallec, P. 2010 Coupling of finite element and boundary integral methods for a capsule in a Stokes flow. Intl J. Numer. Meth. Engng 83, 829850.Google Scholar