Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T22:47:20.852Z Has data issue: false hasContentIssue false

Influence of jet spacing in spanwise-inclined jet injection in supersonic crossflow

Published online by Cambridge University Press:  11 August 2022

R. Sebastian*
Affiliation:
Institute of Aerodynamics, RWTH Aachen University, Wüllnerstrasse 5a, 52062 Aachen, Germany
A.-M. Schreyer
Affiliation:
Institute of Aerodynamics, RWTH Aachen University, Wüllnerstrasse 5a, 52062 Aachen, Germany
*
Email address for correspondence: r.sebastian@aia.rwth-aachen.de

Abstract

In separation control with air-jet vortex generators in supersonic flow, the spacing of the jets in a row array has a crucial effect on the control effectiveness. Previous experimental studies have revealed the overall influence of jet spacing on air-jet vortex generator controlled shock-induced separation zones, focusing mostly on the separation regions. There is, however, a gap in knowledge regarding the mechanisms leading to these changes in control effectiveness, particularly on the interaction between multiple jets and the details of downstream flow evolution. Therefore, the objective of the current study is to provide detailed information on the underlying flow dynamics associated with the injection of a row of spanwise-inclined jets into a supersonic turbulent boundary layer – and in particular the effects of different jet spacings. Four different spacings were studied with large-eddy simulations. In addition, we performed oil-flow and schlieren visualizations of separation control in a 24$^\circ$ compression–ramp interaction with different jet-spacing configurations to validate and discuss our conclusions regarding the effects of jet/jet interactions on the separation-control effectiveness. We analyse the influence of jet spacing on the flow topology, induced vortical structures, and boundary-layer statistics. The jet-induced major vortex pair is the dominant flow structure energizing the near-wall boundary layer. The paper details how interactions amongst adjacent vortex pairs differ for varying jet spacings, thus influencing the momentum transfer and eventually the control efficiency. The dynamic behaviour of the flow was analysed using a three-dimensional dynamic mode decomposition. The resulting insights are key to the development of efficient control set-ups.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ali, M.Y. & Alvi, F. 2015 Jet arrays in supersonic crossflow – an experimental study. Phys. Fluids 27 (12), 126102.CrossRefGoogle Scholar
Ali, M.Y., Alvi, F., Manisankar, C., Verma, S. & Venkatakrishnan, L. 2011 Studies on the control of shock wave–boundary layer interaction using steady microactuators. In 41st AIAA Fluid Dynamics Conference and Exhibit. AIAA Paper 2011-3425.CrossRefGoogle Scholar
Ali, M.Y., Alvi, F.S., Kumar, R., Manisankar, C., Verma, S.B. & Venkatakrishnan, L. 2013 Studies on the influence of steady microactuators on shock-wave/boundary-layer interaction. AIAA J. 51 (12), 27532762.CrossRefGoogle Scholar
Aso, S., Inoue, K., Yamaguchi, K. & Tani, Y. 2009 A study on supersonic mixing by circular nozzle with various injection angles for air breathing engine. Acta Astronaut. 65 (5), 687695.CrossRefGoogle Scholar
Barberopoulos, A.A. & Garry, K.P. 1998 The effect of skewing on the vorticity produced by an airjet vortex generator. Aeronaut. J. 102 (1013), 171177.Google Scholar
Billig, F.S. & Schetz, J.A. 1966 Penetration of gaseous jets injected into a supersonic stream. Journal of Spacecraft and Rockets 3 (11), 16581665.Google Scholar
Boris, J.P., Grinstein, F.F., Oran, E.S. & Kolbe, R.L. 1992 New insights into large eddy simulation. Fluid Dyn. Res. 10 (4), 199228.CrossRefGoogle Scholar
Castelino, N. & Gutmark, E.J. 2021 Numerical investigation of pulsed jets in supersonic crossflow using a high frequency actuator. In AIAA Scitech 2021 Forum. AIAA Paper 2022-1466.CrossRefGoogle Scholar
Clemens, N.T. & Narayanaswamy, V. 2014 Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions. Annu. Rev. Fluid Mech. 46, 469492.CrossRefGoogle Scholar
El-Askary, W., Schroeder, W. & Meinke, M. 2003 LES of compressible wall-bounded flows. In 16th AIAA Computational Fluid Dynamics Conference. AIAA Paper 2003-3554.CrossRefGoogle Scholar
Fric, T.F. & Roshko, A. 1994 Vortical structure in the wake of a transverse jet. J. Fluid Mech. 279, 147.CrossRefGoogle Scholar
Fuller, E.J., Mays, R.B., Thomas, R.H. & Schetz, J.A. 1991 a Mixing studies of helium in air at Mach 6. In 27th AIAA Joint Propulsion Conference. AIAA Paper 1991-2268.Google Scholar
Fuller, E.J., Thomas, R.H. & Schetz, J.A. 1991 b Effects of yaw on low angle injection into a supersonic flow. In 29th AIAA Aerospace Sciences Meeting. AIAA Paper 1991-14.Google Scholar
Funderburk, M.L. & Narayanaswamy, V. 2019 Experimental investigation of microramp control of an axisymmetric shock/boundary-layer interaction. AIAA J. 57 (8), 33793394.CrossRefGoogle Scholar
Génin, F. & Menon, S. 2010 Dynamics of sonic jet injection into supersonic crossflow. J. Turbul. 11, 130.CrossRefGoogle Scholar
Gruber, M., Nejad, A. & Dutton, J. 1995 Circular and elliptical transverse injection into a supersonic crossflow – the role of large-scale structures. In 26th AIAA Fluid Dynamics Conference. AIAA Paper 1995-2150.CrossRefGoogle Scholar
Johnston, J.P. & Nishi, M. 1990 Vortex generator jets – means for flow separation control. AIAA J. 28 (6), 989994.CrossRefGoogle Scholar
Jovanović, M.R., Schmid, P.J. & Nichols, J.W. 2014 Sparsity-promoting dynamic mode decomposition. Phys. Fluids 26 (2), 024103.CrossRefGoogle Scholar
Kamotani, Y. & Greber, I. 1972 Experiments on a turbulent jet in a cross flow. AIAA J. 10 (11), 14251429.CrossRefGoogle Scholar
Karagozian, A.R. 2014 The jet in crossflow. Phys. Fluids 26 (10), 101303.CrossRefGoogle Scholar
Kawai, S. & Lele, S.K. 2010 Large-eddy simulation of jet mixing in supersonic crossflows. AIAA J. 48 (9), 20632083.CrossRefGoogle Scholar
Lefebvre, A.H. 1998 Gas Turbine Combustion. CRC Press.Google Scholar
Lintermann, A., Meinke, M. & Schröder, W. 2020 Zonal Flow Solver (ZFS): a highly efficient multi-physics simulation framework. Intl J. Comput. Fluid Dyn. 34 (7–8), 458485.CrossRefGoogle Scholar
Liou, M.-S. & Steffen, C.J. 1993 A new flux splitting scheme. J. Comput. Phys. 107 (1), 2339.CrossRefGoogle Scholar
Mahesh, K. 2013 The interaction of jets with crossflow. Annu. Rev. Fluid Mech. 45 (1), 379407.CrossRefGoogle Scholar
Mehta, R.D., Shabaka, I.M.M., Shibl, A. & Bradshaw, P. 1983 Longitudinal vortices imbedded in turbulent boundary layers. AIAA Paper 83-0378.CrossRefGoogle Scholar
Meinke, M., Schröder, W., Krause, E. & Rister, T.. 2002 A comparison of second- and sixth-order methods for large-eddy simulations. Comput. Fluids 31 (4), 695718.CrossRefGoogle Scholar
Morkovin, M., Pierce, C. & Craven, C.E. 1952 Interaction of a side jet with a supersonic main stream. Tech. Rep.. Bull. 35, Engineering Research Institute, University of Michigan.CrossRefGoogle Scholar
Nichols, J.W., Larsson, J., Bernardini, M. & Pirozzoli, S. 2017 Stability and modal analysis of shock/boundary layer interactions. Theor. Comput. Fluid Dyn. 31 (1), 3350.CrossRefGoogle Scholar
Pasquariello, V., Hickel, S. & Adams, N.A. 2017 Unsteady effects of strong shock-wave/boundary-layer interaction at high Reynolds number. J. Fluid Mech. 823, 617657.CrossRefGoogle Scholar
Pauley, W.R. & Eaton, J.K. 1988 Experimental study of the development of longitudinal vortex pairs embedded in a turbulent boundary layer. AIAA J. 26 (7), 816823.CrossRefGoogle Scholar
Pickles, J.D. & Narayanaswamy, V. 2020 Control of fin shock induced flow separation using vortex generators. AIAA J. 58 (11), 47944806.CrossRefGoogle Scholar
Ramaswamy, D.P., Hinke, R. & Schreyer, A.-M. 2020 Influence of jet spacing and injection pressure on separation control with air-jet vortex generators. In New Results in Numerical and Experimental Fluid Mechanics XII (ed. A. Dillmann, G. Heller, E. Krämer, C. Wagner, C. Tropea & S. Jakirlić), pp. 234–243. Springer International Publishing.CrossRefGoogle Scholar
Ramaswamy, D.P. & Schreyer, A.-M. 2021 Control of shock-induced separation of a turbulent boundary layer using air-jet vortex generators. AIAA J. 59 (3), 927939.CrossRefGoogle Scholar
Ramaswamy, D.P. & Schreyer, A.-M. 2022 Effects of jet-to-jet spacing of air-jet vortex generators in shock-induced flow-separation control. Flow Turbul. Combust. 109, 3564.CrossRefGoogle Scholar
Ramaswamy, D.P., Sebastian, R. & Schreyer, A.-M. 2021 Influence of air-jet stability on the flow-control effectiveness of air-jet vortex generators. In 74th Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society.Google Scholar
Rana, Z.A., Thornber, B. & Drikakis, D. 2011 Transverse jet injection into a supersonic turbulent cross-flow. Phys. Fluids 23, 046103.CrossRefGoogle Scholar
Renze, P., Schröder, W. & Meinke, M. 2008 Large-eddy simulation of film cooling flows at density gradients. Intl J. Heat Fluid Flow 29 (1), 1834.CrossRefGoogle Scholar
Roidl, B. 2012 A zonal method to efficiently simulate viscous flows. PhD thesis, RWTH Aachen University.Google Scholar
Rowley, C.W., Mezić, I., Bagheri, S., Schlatter, P. & Henningson, D.S. 2009 Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115127.CrossRefGoogle Scholar
Schauerte, C. & Schreyer, A.-M. 2018 Design of a high-speed focusing schlieren system for complex three-dimensional flows. In Proceedings of the 5th International Conference on Experimental Fluid Mechanics (ed. C.J. Kähler, R. Hain, S. Scharnowski & T. Fuchs), pp. 232–237. Institute of Fluid Mechanics and Aerodynamics.Google Scholar
Schlatter, P. & Örlü, R. 2010 Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116126.CrossRefGoogle Scholar
Schmid, P.J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.CrossRefGoogle Scholar
Sebastian, R., Lürkens, T. & Schreyer, A.-M. 2020 Flow field around a spanwise-inclined jet in supersonic crossflow. Aerosp. Sci. Technol. 106, 106209.CrossRefGoogle Scholar
Sebastian, R. & Schreyer, A.-M. 2022 Influence of crossflow Mach number on spanwise-inclined jet injection. In AIAA Scitech 2022 Forum. AIAA Paper 2022-1363.CrossRefGoogle Scholar
Sharma, V., Eswaran, V. & Chakraborty, D. 2020 Effect of fuel-jet injection angle variation on the overall performance of a scramjet engine. Aerosp. Sci. Technol. 100, 105786.CrossRefGoogle Scholar
Souverein, L.J. & Debiève, J.-F. 2010 Effect of air jet vortex generators on a shock wave boundary layer interaction. Exp. Fluids 49 (5), 10531064.CrossRefGoogle Scholar
Sun, M.-B. & Hu, Z.-W. 2018 Mixing in nearwall regions downstream of a sonic jet in a supersonic crossflow at Mach 2.7. Phys. Fluids 30 (10), 106102.CrossRefGoogle Scholar
Szwaba, R. 2005 Shock wave induced separation control by streamwise vortices. J. Therm. Sci. 14 (3), 249253.CrossRefGoogle Scholar
Szwaba, R. 2013 Influence of air-jet vortex generator diameter on separation region. J. Therm. Sci. 22 (4), 294303.CrossRefGoogle Scholar
Venkatakrishnan, V. 1995 Convergence to steady state solutions of the Euler equations on unstructured grids with limiters. J. Comput. Phys. 118 (1), 120130.CrossRefGoogle Scholar
Verma, S.B. & Manisankar, C. 2019 Control of compression-ramp-induced interaction with steady microjets. AIAA J. 57 (7), 28922904.CrossRefGoogle Scholar
Viti, V., Neel, R. & Schetz, J.A. 2009 Detailed flow physics of the supersonic jet interaction flow field. Phys. Fluids 21 (4), 046101.CrossRefGoogle Scholar
Wallis, R.A. 1956 A preliminary note on a modified type of air jet for boundary layer control. Tech. Rep.. HM Stationery Office.Google Scholar
Zhao, K., Alimohammadi, S., Okolo, P.N., Kennedy, J. & Bennett, G.J. 2018 Aerodynamic noise reduction using dual-jet planar air curtains. J. Sound Vib. 432, 192212.CrossRefGoogle Scholar