Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T05:37:04.187Z Has data issue: false hasContentIssue false

Influence of Stokes number on the velocity and concentration distributions in particle-laden jets

Published online by Cambridge University Press:  19 September 2014

Timothy C. W. Lau*
Affiliation:
Centre for Energy Technology, School of Mechanical Engineering, The University of Adelaide, SA 5005, Australia
Graham J. Nathan
Affiliation:
Centre for Energy Technology, School of Mechanical Engineering, The University of Adelaide, SA 5005, Australia
*
Email address for correspondence: timothy.lau@adelaide.edu.au

Abstract

The first measurement of the influence of the Stokes number on the distributions of particle concentration and velocity at the exit of a long pipe are reported, together with the subsequent influence on the downstream evolution of these distributions through a particle-laden jet in co-flow. The data were obtained by simultaneous particle image velocimetry (PIV) and planar nephelometry (PN), using four cameras to provide high resolution through the first 30 jet diameters and also correction for optical attenuation. These data provide much more detailed information than is available from previous measurements. From them, a new understanding is obtained of how the Stokes number influences the flow at the jet exit plane and how this influence propagates throughout the jet.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonia, R. A. & Bilger, R. W. 1973 An experimental investigation of an axisymmetric jet in a co-flowing air stream. J. Fluid Mech. 61, 805822.Google Scholar
Asmolov, E. S. 1999 The inertial lift of a spherical particle in a plane Poiseuille flow at large channel Reynolds numbers. J. Fluid Mech. 381, 6387.CrossRefGoogle Scholar
Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.Google Scholar
Bi, W., Sugii, Y., Okamoto, K. & Madarame, H. 2003 Time-resolved proper orthogonal decomposition of the near-field flow of a round jet measured by dynamic particle image velocimetry. Meas. Sci. Technol. 14, L1L5.Google Scholar
Birzer, C. H., Kalt, P. A. M. & Nathan, G. J. 2011 The influences of jet precession on large-scale instantaneous turbulent particle clusters. Intl J. Multiphase Flow 37, 394402.Google Scholar
Birzer, C. H., Kalt, P. A. M. & Nathan, G. J. 2012 The influences of particle mass loading on mean and instantaneous particle distributions in precessing jet flows. Intl J. Multiphase Flow 41, 1222.Google Scholar
Boguslawski, L. & Popiel, Cz. O. 1979 Flow structure of the free round turbulent jet in the initial region. J. Fluid Mech. 90, 531539.Google Scholar
Eggels, J. G., Unger, F., Weiss, M. H., Westerweel, J., Adrian, R. J., Friedrich, R. & Nieuwstadt, F. T. 1994 Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J. Fluid Mech. 268, 175209.Google Scholar
Elghobashi, S. 2006 An updated classification map of particle-laden turbulent flows. In Proceedings of the IUTAM Symposium on Computational Multiphase Flow (ed. Balachandar, S. & Prosperetti, A.), Springer.Google Scholar
Fairweather, M. & Hurn, J.-P. 2008 Validation of an anisotropic model of turbulent flows containing dispersed solid particles applied to gas–solid jets. Comput. Chem. Engng 32, 590599.Google Scholar
Fan, J., Zhang, X., Chen, L. & Chen, K. 1997 New stochastic particle dispersion modeling of a turbulent particle-laden round jet. Chem. Engng J. 66, 207215.Google Scholar
Fleckhaus, D., Hishida, K. & Maeda, M. 1987 Effect of laden solid particles on the turbulent flow structure of a round free jet. Exp. Fluids 5, 323333.Google Scholar
Frishman, F., Hussainov, M., Kartushinsky, A. & Rudi, U. 1999 Distribution characteristics of the mass concentration of coarse solid particles in a two-phase turbulent jet. J. Aero. Sci. 30, 5169.Google Scholar
Gillandt, I., Fritsching, U. & Bauckhage, K. 2001 Measurement of phase interaction in dispersed gas/particle two-phase flow. Intl J. Multiphase Flow 27, 13131332.Google Scholar
Hardalupas, Y., Taylor, A. M. K. P. & Whitelaw, J. H. 1989 Velocity and particle-flux characteristics of turbulent particle-laden jets. Proc. R. Soc. Lond. A 426, 3178.Google Scholar
Hussein, H. J., Capp, S. P. & George, W. K. 1994 Velocity measurements in a high Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. J. Fluid Mech. 258, 3175.Google Scholar
Kalt, P. A. M., Birzer, C. H. & Nathan, G. J. 2007 Corrections to facilitate planar imaging of particle concentration in particle-laden flows using Mie scattering, Part 1: Collimated laser sheets. Appl. Opt. 46, 58235834.Google Scholar
Kalt, P. A. M. & Nathan, G. J. 2007 Corrections to facilitate planar imaging of particle concentration in particle-laden flows using Mie scattering, Part 2: Diverging laser sheets. Appl. Opt. 46, 72277236.Google Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.Google Scholar
Kussin, J. & Sommerfeld, M. 2002 Experimental studies on particle behaviour and turbulence modification in horizontal channel flow with different wall roughness. Exp. Fluids 33, 143159.Google Scholar
Laats, M. K. & Frishman, F. A. 1970 Assumptions used in calculating the two-phase jet. Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza 5, 186191 (in Russian).Google Scholar
Liepmann, D. & Gharib, M. 1992 The role of streamwise vorticity in the near-field entrainment of round jets. J. Fluid Mech. 245, 643668.Google Scholar
McLaughlin, J. B. 1991 Inertial migration of a small sphere in linear shear flows. J. Fluid Mech. 224, 261274.Google Scholar
McLaughlin, J. B. 1993 The lift on a small sphere in wall-bounded linear shear flows. J. Fluid Mech. 246, 249265.Google Scholar
Mi, J., Nobes, D. S. & Nathan, G. J. 2001 Influence of jet exit conditions on the passive scalar field of an axisymmetric free jet. J. Fluid Mech. 432, 91125.CrossRefGoogle Scholar
Modarress, D., Tan, H. & Elghobashi, S. 1984a Two-component LDA measurement in a two-phase turbulent jet. AIAA J. 22, 624630.Google Scholar
Modarress, D., Wuerer, J. & Elghobashi, S. 1984b An experimental study of a turbulent round two-phase jet. Chem. Engng Commun. 28, 341354.Google Scholar
Mostafa, A. A., Mongia, H. C., McDonell, V. G. & Samuelsen, G. S. 1989 Evolution of particle-laden jet flows: a theoretical and experimental study. AIAA J. 27, 167183.Google Scholar
Mullinger, P. & Jenkins, B. 2008 Industrial and Process Furnaces: Principles, Design and Operation. Elsevier.Google Scholar
Nathan, G. J., Kalt, P. A. M., Alwahabi, Z. T., Dally, B. B., Medwell, P. R. & Chan, Q. N. 2012 Recent advances in the measurement of strongly radiating, turbulent reacting flows. Prog. Energy Combust. Sci. 38, 4161.Google Scholar
Nathan, G. J., Mi, J., Alwahabi, Z. T., Newbold, G. J. R. & Nobes, D. S. 2006 Impacts of a jet’s exit flow pattern on mixing and combustion performance. Prog. Energy Combust. Sci. 32, 496538.Google Scholar
Picano, F., Sardina, G., Gualtieri, P. & Casciola, C. M. 2010 Anomalous memory effects on the transport of inertial particles in turbulent jets. Phys. Fluids 22 (5), 051705.Google Scholar
Pitts, W. M. 1991 Reynolds number effects on the mixing behaviour of axisymmetric turbulent jets. Exp. Fluids 11, 135141.Google Scholar
Prevost, F., Boree, J., Nuglisch, H. J. & Charnay, G. 1996 Measurements of fluid/particle correlated motion in the far field of an axisymmetric jet. Intl J. Multiphase Flow 22, 685701.CrossRefGoogle Scholar
Raffel, M., Willert, C. W. & Kompenhans, J. 1998 Particle Image Velocimetry: A Practical Guide. Springer.Google Scholar
Rajaratnam, N. 1976 Turbulent Jets. Elsevier.Google Scholar
Reeks, M. W. 1983 The transport of discrete particles in inhomogeneous turbulence. J. Aero. Sci. 14, 729739.Google Scholar
Richards, C. D. & Pitts, W. M. 1993 Global density effects on the self-preservation behaviour of turbulent free jets. J. Fluid Mech. 254, 417435.Google Scholar
Saffman, P. G. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22, 385400.Google Scholar
Sheen, H. J., Jou, B. H. & Lee, Y. T. 1994 Effect of particle size on a two-phase turbulent jet. Exp. Therm. Fluid Sci. 8, 315327.Google Scholar
Shuen, J. S., Solomon, A. S. P. & Zhang, Q. F. 1985 Structure of particle-laden jets: measurements and predictions. AIAA J. 23, 396404.CrossRefGoogle Scholar
Smoot, L. D. & Smith, P. J. 1985 Coal Combustion and Gasification. Plenum Press.Google Scholar
Thring, M. W. & Newby, M. P. 1953 Combustion length of enclosed turbulent jet flames. In Fourth International Symposium on Combustion, Williams & Wilkins.Google Scholar
Tsuji, Y., Morikawa, Y., Tanaka, T., Karimine, K. & Nishida, S. 1988 Measurement of an axisymmetric jet laden with coarse particles. Intl J. Multiphase Flow 14, 565574.Google Scholar
Xu, G. & Antonia, R. A. 2002 Effect of different initial conditions on a turbulent round free jet. Exp. Fluids 33, 677683.Google Scholar
Yamaguchi, H. 2008 Engineering Fluid Mechanics. Springer.Google Scholar
Young, J. & Leeming, A. 1997 A theory of particle deposition in turbulent pipe flow. J. Fluid Mech. 340, 129159.Google Scholar