Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T06:43:14.439Z Has data issue: false hasContentIssue false

Initial flow field over an impulsively started circular cylinder

Published online by Cambridge University Press:  29 March 2006

M. Bar-Lev
Affiliation:
Department of Aerospace Engineering, University of Southern California, Los Angeles
H. T. Yang
Affiliation:
Department of Aerospace Engineering, University of Southern California, Los Angeles

Abstract

The initial flow field of an incompressible, viscous fluid around a circular cylinder, set impulsively to move normal to its axis, is studied in detail. The nonlinear vorticity equation is solved by the method of matched asymptotic expansions. Analytic solutions for the stream function in terms of exponential and error functions for the inner flow field, and of circular functions for the outer, are obtained to the third order, from which a uniformly valid composite solution is found. Also presented are the vorticity, pressure, separation point and drag. These quantities agree with the numerical computations of Collins & Dennis. Extended solutions developed by Padé approximants indicate that higher than third-order approximations will yield only minor improvements.

Type
Research Article
Copyright
© 1975 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, G. A. 1975 Essentials of Padé Approximant. Academic.
Belcher, R. J., Burggraf, O. R., Cooke, J. C., Robins, A. J. & Stewartson, K. 1972 Recent Research on Unsteady Boundary Layers, vol. 2 (ed. E. A. Eichelbrenner). Quebec: Laval University Press.
Collins, W. M. & Dennis, S. C. R. 1973a Quart. J. Mech. Appl. Math. 26, 53.
Collins, W. M. & Dennis, S. C. R. 1973b J. Fluid Mech. 60, 105.
Jain, P. C. & Rao, K. S. 1969 Phys. Fluids Suppl. 12, II-57.
Panikker, P. K. K. & Lavan, Z. 1975 J. Comp. Phys. 18, 46.
Proudman, I. & Johnson, K. 1962 J. Fluid Mech. 12, 161.
Riley, N. 1975 SIAM Rev. 17, 278.
Robins, A. J. & Howarth, J. A. 1972 J. Fluid Mech. 56, 161.
Rosenhead, L. (ed.) 1963 Laminar Boundary Layer. Oxford: Clarendon Press.
Schlichting, H. 1968 Boundary Layer Theory. McGraw-Hill.
Schwabe, M. 1943 N.A.C.A. Tech. Memo. no. 1039.
Sears, W. R. & Telionis, D. P. 1975 SIAM J. Appl. Math. 28, 215.
Telionis, D. P. & Tsahalis, D. T. 1974 Acta Astronautica, 1, 1487.
Thoman, D. C. & Szewczyk, A. A. 1969 Phys. Fluids Suppl. 12, II-76.
Van Dyke, M. 1974 Quart. J. Mech. Appl. Math. 27, 423.
Van Dyke, M. 1975 Perturbation Methods in Fluid Mechanics. Parabolic.
Wang, C. Y. 1967 J. Math. Phys. 46, 195.
Yang, H. T. & Lees, L. 1956 J. Math. Phys. 24, 195.