Hostname: page-component-5cf477f64f-fcbfl Total loading time: 0 Render date: 2025-03-31T07:50:37.382Z Has data issue: false hasContentIssue false

Instability at imploding gas layer impacted by convergent shock

Published online by Cambridge University Press:  27 March 2025

Juchun Ding
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China Laoshan Laboratory, Qingdao 266237, PR China
Chengshuo Fan
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Zhangbo Zhou*
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Xisheng Luo
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
*
Corresponding author: Zhangbo Zhou, zbzhou@ustc.edu.cn

Abstract

This work reports high-fidelity shock-tube experiments on the convergent Richtmyer–Meshkov (RM) instability at a heavy gas layer. The convergent shock tube is designed based on shock dynamics theory, significantly mitigating interface deceleration and reflected shock. As a result, long-term observation of instability growth up to nonlinear stage, free of interface deceleration and reshock, is achieved. Various types of SF$_6$ layers surrounded by air with controllable thicknesses and shapes, created using a soap film technique, are examined. For thick layers, the evolutions of the outer and inner interfaces are nearly decoupled regardless of the layer shape. The weakly nonlinear model of Wang (Phys. Plasmas,vol. 22, 2015, p. 082702), designed for cylindrical RM instability at a single interface, provides a reasonable prediction of perturbation growth at the inner interface, while slightly underestimating instability growth at the outer interface, as it neglects the effects of rarefaction wave. For thin layers, perturbation growth is fastest at either interface when both interfaces initially possess in-phase perturbations, moderate when only one interface is initially perturbed and slowest when the two interfaces have anti-phase perturbations. This variation in growth rates is due to the fact that the evolution of a thin layer is influenced by both reverberating waves and interface coupling, with each factor being highly sensitive to the layer shape. The original vortex method is extended to address the convergent RM instability by incorporating the influences of unsteady background flow, interface coupling and reverberating waves into the transport of a vortex sheet. This extended vortex method enables accurate prediction of convergent RM instability at a gas layer, covering the full range from early linear to late nonlinear stages.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, G.R., Meiron, D.I. & Orszag, S.A. 1980 Vortex simulations of the Rayleigh–Taylor instability. Phys. Fluids 23 (5), 14851490.CrossRefGoogle Scholar
Baker, G.R., Meiron, D.I. & Orszag, S.A. 1982 Generalized vortex methods for free-surface flow problems. J. Fluid Mech. 123, 477501.CrossRefGoogle Scholar
Bates, J.W. 2012 On the theory of a shock wave driven by a corrugated piston in a non-ideal fluid. J. Fluid Mech. 691, 146164.CrossRefGoogle Scholar
Bell, G.I. 1951 Taylor instability on cylinders and spheres in the small amplitude approximation. Tech. Rep. LA-1321. LANL Los Alamos Scientific Laboratory of the University of California.Google Scholar
Betti, R. & Hurricane, O.A. 2016 Inertial-confinement fusion with lasers. Nat. Phys. 12 (5), 435448.CrossRefGoogle Scholar
Biamino, L., Jourdan, G., Mariani, C., Houas, L., Vandenboomgaerde, M. & Souffland, D. 2015 On the possibility of studying the converging Richtmyer–Meshkov instability in a conventional shock tube. Exp. Fluids 56 (2), 15.CrossRefGoogle Scholar
Brouillette, M. 2002 The Richtmyer–Meshkov instability. Annu. Rev. Fluid Mech. 34 (1), 445468.CrossRefGoogle Scholar
Calvo-Rivera, A., Huete, C. & Velikovich, A.L. 2022 The stability of expanding reactive shocks in a van der Waals fluid. Phys. Fluids 34 (4), 046106.CrossRefGoogle Scholar
Calvo-Rivera, A., Velikovich, A.L. & Huete, C. 2023 Stability of expanding accretion shocks for an arbitrary equation of state. J. Fluid Mech. 964, A33.CrossRefGoogle Scholar
Cohen, R.D. 1991 Shattering of a liquid drop due to impact. Proc. R. Soc. Lond. A 435, 483503.Google Scholar
Dell, Z.R., Pandian, A., Bhowmick, A.K., Swisher, N.C., Stanic, M., Stellingwerf, R.F. & Abarzhi, S.I. 2017 Maximum initial growth-rate of strong-shock-driven Richtmyer–Meshkov instability. Phys. Plasmas 24 (9), 090702.CrossRefGoogle Scholar
Ding, J., Li, J., Sun, R., Zhai, Z. & Luo, X. 2019 Convergent Richtmyer–Meshkov instability of a heavy gas layer with perturbed outer interface. J. Fluid Mech. 878, 277291.CrossRefGoogle Scholar
Ding, J., Si, T., Chen, M., Zhai, Z., Lu, X. & Luo, X. 2017 a On the interaction of a planar shock with a three-dimensional light gas cylinder. J. Fluid Mech. 828, 289317.CrossRefGoogle Scholar
Ding, J., Si, T., Yang, J., Lu, X., Zhai, Z. & Luo, X. 2017 b Measurement of a Richtmyer–Meshkov instability at an air-SF $_6$ interface in a semiannular shock tube. Phys. Rev. Lett. 119 (1), 014501.CrossRefGoogle Scholar
Fincke, J.R., Lanier, N.E., Batha, S.H., Hueckstaedt, R.M., Magelssen, G.R., Rothman, S.D., Parker, K.W. & Horsfield, C.J. 2004 Postponement of saturation of the Richtmyer–Meshkov instability in a convergent geometry. Phys. Rev. Lett. 93 (11), 115003.CrossRefGoogle Scholar
Goncharov, V.N. 2002 Analytical model of nonlinear, single-mode, classical Rayleigh–Taylor instability at arbitrary Atwood numbers. Phys. Rev. Lett. 88 (13), 134502.Google ScholarPubMed
Groom, M. & Thornber, B. 2021 Reynolds number dependence of turbulence induced by the Richtmyer–Meshkov instability using direct numerical simulations. J. Fluid Mech. 908, A31.CrossRefGoogle Scholar
de Henry, F.M.T., Movahed, P. & Johnsen, E. 2014 Numerical simulations of a shock interacting with successive interfaces using the Discontinuous Galerkin method: the multilayered Richtmyer–Meshkov and Rayleigh–Taylor instabilities. Shock Waves 25 (4), 329345.CrossRefGoogle Scholar
Hosseini, S.H.R. & Takayama, K. 2005 Experimental study of Richtmyer–Meshkov instability induced by cylindrical shock waves. Phys. Fluids 17 (8), 084101.CrossRefGoogle Scholar
Huete, C., Velikovich, A.L., Martínez-Ruiz, D. & Calvo-Rivera, A. 2021 Stability of expanding accretion shocks for an arbitrary equation of state. J. Fluid Mech. 927, A35.Google Scholar
Ishizaki, R., Nishihara, K., Sakagami, H. & Ueshima, Y. 1996 Instability of a contact surface driven by a nonuniform shock wave. Phys. Rev. E 53 (6), R5592R5595.Google ScholarPubMed
Jacobs, J.W., Jenkins, D.G., Klein, D.L. & Benjamin, R.F. 1995 Nonlinear growth of the shock-accelerated instability of a thin fluid layer. J. Fluid Mech. 295 (1), 2342.CrossRefGoogle Scholar
Krasny 1986 Desingularization of periodic vortex sheet roll-up. J. Comput. Phys. 65, 292313.CrossRefGoogle Scholar
Lanier, N.E., Barnes, C.W., Batha, S.H., Day, R.D., Magelssen, G.R., Scott, J.M., Dunne, A.M., Parker, K.W. & Rothman, S.D. 2003 Multimode seeded Richtmyer–Meshkov mixing in a convergent, compressible, miscible plasma system. Phys. Plasmas 10 (5), 18161821.CrossRefGoogle Scholar
Lei, F., Ding, J., Si, T., Zhai, Z. & Luo, X. 2017 Experimental study on a sinusoidal air/SF $_6$ interface accelerated by a cylindrically converging shock. J. Fluid Mech. 826, 819829.CrossRefGoogle Scholar
Li, J., Ding, J., Luo, X. & Zou, L. 2022 Instability of a heavy gas layer induced by a cylindrical convergent shock. Phys. Fluids 34 (4), 042123.Google Scholar
Li, J., Ding, J., Si, T. & Luo, X. 2020 Convergent Richtmyer–Meshkov instability of light gas layer with perturbed outer surface. J. Fluid Mech. 884, R2.CrossRefGoogle Scholar
Li, X., Fu, Y., Yu, C. & Li, L. 2021 Statistical characteristics of turbulent mixing in spherical and cylindrical converging Richtmyer–Meshkov instabilities. J. Fluid Mech. 928, A10.CrossRefGoogle Scholar
Liang, Y. & Luo, X. 2021 On shock-induced heavy-fluid-layer evolution. J. Fluid Mech. 920, A13.Google Scholar
Ligrani, P.M., McNabb, E.S., Collopy, H., Anderson, M. & Marko, S.M. 2020 Recent investigations of shock wave effects and interactions. Adv. Aerodyn. 2 (1), 4.CrossRefGoogle Scholar
Lindl, J., Landen, O., Edwards, J., Moses, E. & Team, N. 2014 Review of the national ignition campaign 2009–2012. Phys. Plasmas 21 (2), 020501.Google Scholar
Liu, L., Liang, Y., Ding, J., Liu, N. & Luo, X. 2018 An elaborate experiment on the single-mode Richtmyer–Meshkov instability. J. Fluid Mech. 853, R2.CrossRefGoogle Scholar
Liu, W.H., He, X.T. & Yu, C.P. 2012 Cylindrical effects on Richtmyer–Meshkov instability for arbitrary Atwood numbers in weakly nonlinear regime. Phys. Plasmas 19 (7), 072108.CrossRefGoogle Scholar
Liu, W.H., Yu, C.P., Ye, W.H., Wang, L.F. & He, X.T. 2014 Nonlinear theory of classical cylindrical Richtmyer–Meshkov instability for arbitrary Atwood numbers. Phys. Plasmas 21 (6), 062119.Google Scholar
Lombardini, M., Pullin, D.I. & Meiron, D.I. 2014 a Turbulent mixing driven by spherical implosions. Part 1. Flow description and mixing-layer growth. J. Fluid Mech. 748, 85112.CrossRefGoogle Scholar
Lombardini, M., Pullin, D.I. & Meiron, D.I. 2014 b Turbulent mixing driven by spherical implosions. Part 2. Turbulence statistics. J. Fluid Mech. 748, 113142.Google Scholar
Luo, X., Ding, J., Wang, M., Zhai, Z. & Si, T. 2015 A semi-annular shock tube for studying cylindrically converging Richtmyer–Meshkov instability. Phys. Fluids 27 (9), 091702.CrossRefGoogle Scholar
Luo, X., Li, M., Ding, J., Zhai, Z. & Si, T. 2019 Nonlinear behaviour of convergent Richtmyer–Meshkov instability. J. Fluid Mech. 877, 130141.CrossRefGoogle Scholar
Luo, X., Zhang, F., Ding, J., Si, T., Yang, J., Zhai, Z. & Wen, C. 2018 Long-term effect of Rayleigh–Taylor stabilization on converging Richtmyer–Meshkov instability. J. Fluid Mech. 849, 231244.CrossRefGoogle Scholar
Meshkov, E.E. 1969 Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4 (5), 101104.CrossRefGoogle Scholar
Mikaelian, K.O. 1995 Rayleigh–Taylor and Richtmyer–Meshkov instabilities in finite-thickness fluid layers. Phys. Fluids 7 (4), 888890.Google Scholar
Mikaelian, K.O. 2005 Rayleigh–Taylor and Richtmyer–Meshkov instabilities and mixing in stratified cylindrical shells. Phys. Fluids 17 (9), 094105.CrossRefGoogle Scholar
Mohaghar, M., Carter, J., Pathikonda, G. & Ranjan, D. 2019 The transition to turbulence in shock-driven mixing: effects of Mach number and initial conditions. J. Fluid Mech. 871, 595635.Google Scholar
Peng, N., Yang, Y., Wu, J. & Xiao, Z. 2021 Mechanism and modelling of the secondary baroclinic vorticity in the Richtmyer–Meshkov instability. J. Fluid Mech. 911, A56.CrossRefGoogle Scholar
Pfaff, T., Thuerey, N. & Gross, M. 2012 Lagrangian vortex sheets for animating fluids. ACM Trans. Graph. 31 (4), 18.CrossRefGoogle Scholar
Plesset, M.S. 1954 On the stability of fluid flows with spherical symmetry. J. Appl. Phys. 25 (1), 9698.CrossRefGoogle Scholar
Ranjan, D., Niederhaus, J.H.J., Oakley, J.G., Anderson, M.H., Bonazza, R. & Greenough, J.A. 2008 Shock-bubble interactions: features of divergent shock-refraction geometry observed in experiments and simulations. Phys. Fluids 20 (3), 036101.Google Scholar
Ranjan, D., Oakley, J. & Bonazza, R. 2011 Shock-bubble interactions. Annu. Rev. Fluid Mech. 43 (1), 117140.Google Scholar
Rayleigh, L. 1883 Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc 14, 170177.Google Scholar
Richtmyer, R.D. 1960 Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Maths 13 (2), 297319.Google Scholar
Ryu, D. & Vishniac, E.T. 1987 The growth of linear perturbations of adiabatic shock waves. Astrophys. J. 313, 820841.CrossRefGoogle Scholar
Samtaney, R., Ray, J. & Zabusky, N.J. 1998 Baroclinic circulation generation on shock accelerated slow/fast gas interfaces. Phys. Fluids 10 (5), 12171230.CrossRefGoogle Scholar
Samtaney, R. & Zabusky, N.J. 1994 Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: models and scaling laws. J. Fluid Mech. 269, 4578.CrossRefGoogle Scholar
Sohn, S.I. 2003 Simple potential-flow model of Rayleigh–Taylor and Richtmyer–Meshkov instabilities for all density ratios. Phys. Rev. E 67 (2), 026301.Google ScholarPubMed
Sohn, S.-I. 2011 Late-time vortex dynamics of Rayleigh–Taylor Instability. J. Phys. Soc. Japan 80 (8), 084401.CrossRefGoogle Scholar
Sohn, S.I., Yoon, D. & Hwang, W. 2010 Long-time simulations of the Kelvin-Helmholtz instability using an adaptive vortex method. Phys. Rev. E 82 (4), 046711.Google ScholarPubMed
Stanic, M., Stellingwerf, R.F., Cassibry, J.T. & AbarzhiS, I. 2012 Scale coupling in Richtmyer–Meshkov flows induced by strong shocks. Phys. Plasmas 19 (9), 082706.CrossRefGoogle Scholar
Taylor, G. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. Lond. A: Math. Phys. Sci. 201 (1065), 192196.Google Scholar
Tryggvason, G. 1988 Numerical simulations of the Rayleigh–Taylor instability. J. Comput. Phys. 75 (2), 253282.CrossRefGoogle Scholar
Urzay, J. 2018 Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annu. Rev. Fluid Mech. 50 (1), 593627.Google Scholar
Vandenboomgaerde, M., Rouzier, P., Souffland, D., Biamino, L., Jourdan, G., Houas, L. & Mariani, C. 2018 Nonlinear growth of the converging Richtmyer–Meshkov instability in a conventional shock tube. Phys. Rev. Fluids 3 (1), 014001.CrossRefGoogle Scholar
Velikovicha, A.L. 1996 Analytic theory of Richtmyer–Meshkov instability for the case of reflected rarefaction wave. Phys. Fluids 8 (6), 16661679.CrossRefGoogle Scholar
Vishniac, E.T. 1983 The dynamic and gravitational instabilities of spherical shocks. Astrophys. J. 274, 152167.CrossRefGoogle Scholar
Wang, H., Wang, H., Zhai, Z. & Luo, X. 2023 High-amplitude effect on single-mode Richtmyer–Meshkov instability of a light–heavy interface. Phys. Fluids 35 (1), 016106.Google Scholar
Wang, L.F., Wu, J.F., Guo, H.Y., Ye, W.H., Liu, J., Zhang, W.Y. & He, X.T. 2015 Weakly nonlinear Bell-Plesset effects for a uniformly converging cylinder. Phys. Plasmas 22 (8), 082702.CrossRefGoogle Scholar
Wouchuk, J.G. & Nishihara, K. 1997 Asymptotic growth in the linear Richtmyer–Meshkov instability. Phys. Plasmas 4 (4), 10281038.CrossRefGoogle Scholar
Wu, Z., Li, Y., Lu, L., Xu, X. & liang, R. 2024 Influence of the shock wave-turbulence interaction on the swirl distortion in hypersonic inlet. Adv. Aerodyn. 6 (1), 23.Google Scholar
Xu, J., Wang, H., Zhai, Z. & Luo, X. 2023 Convergent Richtmyer–Meshkov instability on two-dimensional dual-mode interfaces. J. Fluid Mech. 965, A8.CrossRefGoogle Scholar
Yan, Z., Fu, Y., Wang, L., Yu, C., Li, X. 2022 Effect of chemical reaction on mixing transition and turbulent statistics of cylindrical Richtmyer–Meshkov instability. J. Fluid Mech. 941, A55.CrossRefGoogle Scholar
Yang, Y., Zhang, Q. & Sharp, D.H. 1994 Small amplitude theory of Richtmyer–Meshkov instability. Phys. Fluids 6 (5), 18561873.Google Scholar
Zhai, Z., Liu, C., Qin, F., Yang, J. & Luo, X. 2010 Generation of cylindrical converging shock waves based on shock dynamics theory. Phys. Fluids 22 (4), 041701.Google Scholar
Zhan, D., Li, Z., Yang, J., Zhu, Y. & Yang, J. 2018 Note: A contraction channel design for planar shock wave enhancement. Rev. Sci. Instrum. 89 (5), 056104.CrossRefGoogle ScholarPubMed
Zhang, D., Ding, J., Li, M., Zou, L. & Luo, X. 2023 a Effects of reverberating waves and interface coupling on a divergent Richtmyer–Meshkov instability. J. Fluid Mech. 975, A44.CrossRefGoogle Scholar
Zhang, D., Ding, J., Si, T. & Luo, X. 2023 b Divergent Richtmyer–Meshkov instability on a heavy gas layer. J. Fluid Mech. 959, A37.CrossRefGoogle Scholar
Zhang, Q., Deng, S. & Guo, W. 2018 a Quantitative theory for the growth rate and amplitude of the compressible Richtmyer–Meshkov instability at all density ratios. Phys. Rev. Lett. 121 (17), 174502.CrossRefGoogle ScholarPubMed
Zhang, Q. & Sohn, S.I. 1997 Nonlinear theory of unstable fluid mixing driven by shock wave. Phys. Fluids 9 (4), 11061124.CrossRefGoogle Scholar
Zhang, W., Wu, Q., Zou, L., Zheng, X., Li, X., Luo, X. & Ding, J. 2018 b Mach number effect on the instability of a planar interface subjected to a rippled shock. Phys. Rev. E 98 (4), 043105.CrossRefGoogle Scholar
Zhang, Y., Zhao, Y., Ding, J. & Luo, X. 2023 c Richtmyer–Meshkov instability with a rippled reshock. J. Fluid Mech. 968, A3.Google Scholar
Zhou, Y. 2017 a Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep. 720-722, 1136.Google Scholar
Zhou, Y. 2017 b Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep. 723-725, 1160.Google Scholar
Zou, L., Al-Marouf, M., Cheng, W., Samtaney, R., Ding, J. & Luo, X. 2019 Richtmyer–Meshkov instability of an unperturbed interface subjected to a diffracted convergent shock. J. Fluid Mech. 879, 448467.CrossRefGoogle Scholar