Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T10:52:35.431Z Has data issue: false hasContentIssue false

Instability of the buoyancy layer on an evenly heated vertical wall

Published online by Cambridge University Press:  31 August 2007

G. D. McBAIN
Affiliation:
School of Aerospace, Mechanical, & Mechatronic Engineering, The University of Sydney, Darlington, NSW 2006, Australia
S. W. ARMFIELD
Affiliation:
School of Aerospace, Mechanical, & Mechatronic Engineering, The University of Sydney, Darlington, NSW 2006, Australia
GILLES DESRAYAUD
Affiliation:
LETEM Laboratory, INSSET, University of Picardie, 02109 Saint-Quentin, France

Abstract

The stability of the buoyancy layer on a uniformly heated vertical wall in a stratified fluid is investigated using both semi-analytical and direct numerical methods. As in the related problem in which the excess temperature of the wall is specified, the basic laminar flow is steady and one-dimensional. Here flows varying in time and with height are considered, the behaviour being determined by the fluid's Prandtl number and a Reynolds number proportional to the ratio of two temperature gradients: the horizontal one imposed at the wall and the vertical one existing in the far field. For low Reynolds numbers, the flow is stable with variation only in the wall-normal direction. For Reynolds numbers greater than a critical value, depending on the Prandtl number, the flow is unstableand supports two-dimensional travelling waves. The critical Reynolds number and other properties have been obtained via linearized stability analysis and are shown to accuratelypredict the behaviour of the full nonlinear solution obtained numerically for Prandtl number 7. The stability analysis employs a novel Laguerre collocation scheme while the direct numerical simulations use a second-order finite volume method.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., DuCroz, J. Croz, J., Greenbaum, A., Hammarling, S., McKenney, A. & Sorenson, D. 1999 LAPACK Users' Guide, 3rd edn. SIAM.CrossRefGoogle Scholar
Armfield, S. W. & Street, R. 1999 The fractional-step method for the Navier–Stokes equations on staggered grids: The accuracy of three variations. J. Comput. Phys. 153, 660665.CrossRefGoogle Scholar
Armfield, S. W. & Street, R. 2002 An analysis and comparison of the time accuracy of fractional-step methods for the Navier–Stokes equations on staggered grids. Intl J. Numer. Meth. Fluids. 38, 255282.CrossRefGoogle Scholar
Armfield, S. & Street, R. 2003 The pressure accuracy of fractional-step methods for the Navier–Stokes equations on staggered grids. ANZIAM J. 44, C20C39.CrossRefGoogle Scholar
Bark, F. H., Alavyoon, F. & Dahlkild, A. A. 1992 On unsteady free convection in vertical slots due to prescribed fluxes of heat and mass at the vertical walls. J. Fluid Mech. 235, 665689.CrossRefGoogle Scholar
Bergholz, R. F. 1978 Instabilities of steady natural convection in a vertical fluid layer. J. Fluid Mech. 84, 743768.CrossRefGoogle Scholar
Birikh, R. V. 1966 On small perturbations of a plane parallel flow with cubic velocity profile. J. Appl. Math. Mech. 30, 432438.CrossRefGoogle Scholar
Birikh, R. V., Gershuni, G. Z., Zhukhovitskii, E. M. & Rudakov, R. N. 1972 On oscillatory instability of plane–parallel convective motion in a vertical channel. J. Appl. Math. Mech. 36, 707710.CrossRefGoogle Scholar
Boyd, J. P. 2001 Chebyshev and Fourier Spectral Methods, 2nd edn. Dover.Google Scholar
Bratsun, D. A., Zyuzgin, A. V. & Putin, G. F. 2003 Non-linear dynamics and pattern formation in a vertical fluid layer heated from the side. Intl J. Heat Fluid Flow. 24, 835852.CrossRefGoogle Scholar
Chen, Y.-M. & Perlstein, A. J. 1989 Stability of free-convection flows of variable-viscosity fluids in vertical and inclined slots. J. Fluid Mech. 198, 513541.CrossRefGoogle Scholar
Christov, C. I. & Homsy, G. M. 2001 Nonlinear dynamics of two-dimensional convection in a vertically stratified slot with and without gravity modulation. J. Fluid Mech. 430, 335360.CrossRefGoogle Scholar
Davis, P. J. & Rabinowitz, P. 1984 Methods of Numerical Integration, 2nd edn. Academic.Google Scholar
Desrayaud, G. 1990 Stability of flow near a heat-flux plate and comparison with numerical simulations in a square cavity. Report 1990/LT/01. CNAM.Google Scholar
Desrayaud, G. & Nguyen, T. H. 1989 Instabilités thermonconvectives dans une cavité à flux imposés. In Comptes Rendus. Douzième Congrès Canadien de Mécanique Appliquée (ed. Erki, M. A. & Kirkhope, J.), vol. 2, pp. 716717. Carleton University.Google Scholar
Desrayaud, G., Nguyen, T. H. & LePeutrec, Y. Peutrec, Y. 1989 Stability of a buoyancy-layer. In itNatural Convection in Enclosures, Eurotherm Seminar No. 11, Extended Abstracts (ed. Quarini, G. L. & Lauriat, G.), pp. 6769. Eurotherm.Google Scholar
Eaton, J. W. 2002 GNU. Octave Manual. Network Theory.Google Scholar
Eklund, A., Alavyoon, F., Simonsson, D., Karlsson, R. I. & Bark, F. H. 1991 Theoretical and experimental studies of free convection and stratification of electrolyte in a copper refining cell. Electrochim. Acta. 36, 13451354.CrossRefGoogle Scholar
Fornberg, B. 1996 A Practical Guide to Pseudospectral Methods. Cambridge University Press.CrossRefGoogle Scholar
Frazer, R. A., Duncan, W. J. & Collar, A. R. 1938 Elementary Matrices and Some Applications to Dynamics and Differential Equations. Cambridge University Press.CrossRefGoogle Scholar
Fröberg, C.-E. 1965 Introduction to Numerical Analysis. Addison-Wesley.Google Scholar
Gautschi, W. 1994 Algorithm 726: ORTHPOL – a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software. 20, 2162.CrossRefGoogle Scholar
Gershuni, G. Z. & Zhukhovitskii, E. M. 1976 Convective Stability of Incompressible Fluids. Israel Program for Scientific Translations.Google Scholar
Gill, A. E. & Davey, A. 1969 Instabilities of a buoyancy driven system. J. Fluid Mech. 35, 775798.CrossRefGoogle Scholar
Greig, D. M. 1980 Optimisation. Longman.Google Scholar
Hochstrasser, U. W. 1965 Orthogonal polynomials. In Handbook of Mathematical Functions (ed. Abramowitz, M. & Stegun, I.), chap. 22, pp. 771802. Dover.Google Scholar
Iyer, P. A. 1973 Instabilities in buoyancy driven buoyancy flows in a stably stratified medium. Boundary Layer Met. 5, 5366.CrossRefGoogle Scholar
Iyer, P. A. & Kelly, R. E. 1978 Supercritical solutions for the buoyancy boundary layer. J. Heat Transfer. 100, 648652.CrossRefGoogle Scholar
Joseph, D. D. 1976 Stability of Fluid Motions II. Springer.CrossRefGoogle Scholar
Kimura, S. & Bejan, A. 1984 The boundary layer natural convection regime in a rectangular cavity with uniform heat flux from the side. J. Heat Transfer. 106, 98103.CrossRefGoogle Scholar
Kolobkov, N. 1960 Our Atmospheric Ocean. Foreign Languages.Google Scholar
Kurtz, E. F. & Crandall, S. H. 1962 Computer-aided analysis of hydrodynamic stability. J. Mathes Phys. 41, 264279.CrossRefGoogle Scholar
Laurie, D. P. 2001 Computation of Gauss-type quadrature formulas. J. Comput. Appl. Math. 127, 201217.CrossRefGoogle Scholar
Levine, H. A. & Weinberger, H. F. 1986 Inequalities between Dirichlet and Neumann eigenvalues. Arch. Rat. Mech. Anal. 94 (3), 193208.CrossRefGoogle Scholar
Manins, P. C. & Sawford, B. L. 1979 A model of katabatic winds. J. Atmos. Sci. 36, 619630.2.0.CO;2>CrossRefGoogle Scholar
McBain, G. D. 2004 Skirting subsets of the plane, with application to marginal stability curves. ANZIAM J. 45 (E), C78C91.Google Scholar
McBain, G. D. & Armfield, S. W. 2004 Natural convection in a vertical slot: Accurate solution of the linear stability equations. ANZIAM J. 45 (E), C92C105.CrossRefGoogle Scholar
Morley, A. 1954 Strength of Materials, 11th edn. Longmans, Green and Co.Google Scholar
Nachtsheim, P. R. 1963 Stability of free-convection boundary-layer flows. Tech. Note D-2089. NASA.Google Scholar
Peacock, T., Stocker, R. & Aristoff, J. M. 2004 An experimental investigation of the angular dependence of diffusion-driven flow. Phys. Fluids. 16, 35033505.CrossRefGoogle Scholar
Phillips, O. M. 1970 On flows induced by diffusion in a stably stratified fluid. Deep-Sea Res. 17, 435440.Google Scholar
Plapp, J. E. 1957 The analytic study of laminar boundary-layer stability in free convection. J. Aeronaut. Sci. 24, 318319.Google Scholar
Polymeropoulos, C. E. & Gebhart, B. 1966 Stability of free convection flow over a vertical uniform flux plate. AIAA J. 4, 20662068.CrossRefGoogle Scholar
Prandtl, L. 1952 Essentials of Fluid Dynamics. Blackie.Google Scholar
Shapiro, A. & Fedorovich, E. 2004 a Prandtl number dependence of unsteady natural convection along a vertical plate in a stably stratified fluid. Intl J. Heat Mass Transfer. 47, 49114927.CrossRefGoogle Scholar
Shapiro, A. & Fedorovich, E. 2004 b Unsteady convectively driven flow along a vertical plate immersed in a stably stratified fluid. J. Fluid Mech. 498, 333352.Google Scholar
Skyllingstad, E. D. 2003 Large-eddy simulation of katabatic flows. Boundary Layer Met. 106, 217243.CrossRefGoogle Scholar
Stuart, J. T. 1958 On the non-linear mechanics of hydrodynamic stability. J. Fluid Mech. 4, 121.CrossRefGoogle Scholar
Szewcyzk, A. A. 1962 Stability and transition of the free-convection layer along a vertical flat plate. Intl J. Heat Mass Transfer. 5, 903914.CrossRefGoogle Scholar
Tao, J. 2006 Nonlinear global instability in buoyancy-driven boundary-layer flows. J. Fluid Mech. 566, 377388.CrossRefGoogle Scholar
Tao, J., LeQuéré, P. Quéré, P. & Xin, S. 2004 a Absolute and convective instabilities of natural convection flow in boundary-layer regime. Phys. Rev. E 70, 066311.Google ScholarPubMed
Tao, J., LeQuéré, P. Quéré, P. & Xin, S. 2004 b Spatio-temporal instability of the natural-convection boundary layer in thermally stratified medium. J. Fluid Mech. 518, 363379.CrossRefGoogle Scholar
Villadsen, J. V. & Stewart, W. E. 1967 Solution of boundary-value problems by orthogonal collocation. Chem. Engng Sci. 22, 14831501.CrossRefGoogle Scholar
Weideman, J. A. C. & Reddy, S. C. 2000 A MATLAB differentiation matrix suite. ACM Trans. Math. Software. 26, 465519.CrossRefGoogle Scholar
Wunsch, C. 1970 On oceanic boundary mixing. Deep-Sea Res. 17, 293301.Google Scholar