Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T07:25:30.931Z Has data issue: false hasContentIssue false

The interaction of an oblique shock wave with a laminar boundary layer revisited. An experimental and numerical study

Published online by Cambridge University Press:  21 April 2006

G. Degrez
Affiliation:
von Kármán Institute for Fluid Dynamics, Chaussée de Waterloo, 72, B-1640 Rhode Saint Genèse, Belgium Present address: Université de Sherbrooke, Cité Universitaire, Sherbrooke, Quebec J1K 2R1, Canada.
C. H. Boccadoro
Affiliation:
von Kármán Institute for Fluid Dynamics, Chaussée de Waterloo, 72, B-1640 Rhode Saint Genèse, Belgium Present address: Northrop Corporation, Advanced Systems Division, Pico Rivera, CA 90660, USA.
J. F. Wendt
Affiliation:
von Kármán Institute for Fluid Dynamics, Chaussée de Waterloo, 72, B-1640 Rhode Saint Genèse, Belgium

Abstract

An investigation of an oblique shock wave/laminar boundary layer interaction is presented. The Mach number was 2.15, the Reynolds number was 105 and the overall pressure ratio was 1.55. The interation has been demonstrated to be laminar and nominally two-dimensional. Experimental results include pressure distributions on the plate and single component laser-Doppler velocimetry velocity measurements both in the attached and separated regions.

The numerical results have been obtained by solving the full compressible Navier-Stokes equations with the implicit approximate factorization algorithm by Beam & Warming (1980). Comparison with experimental data shows good agreement in terms of pressure distributions, positions of separation and reattachment and velocity profiles.

Type
Research Article
Copyright
© 1987 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baroth, E. C. & Holt, M. 1983 Investigation of supersonic flow in a compression corner by laser Doppler anemometry. Exp. Fluids 1 (4), 195203.Google Scholar
Beam, R. M. & Warming, R. F. 1978 An implicit factored scheme for the compressible Navier-Stokes equations. AIAA J. 16 (4), 392402.Google Scholar
Beam, R. M. & Warming, R. F. 1980 Alternating direction implicit methods for parabolic equations with a mixed derivative. SIAM J. Sci. Slat. Comput. 1, 131159.Google Scholar
Boccadoro, C. H. & Wendt, J. F. 1984 Investigation of an oblique shock wave/laminar boundary layer interaction using LDV. von Kármán Institute TN 152.
Burgio, C. & Ginoux, J. J. 1970 Comparison between shock wave/boundary layer interactions caused by either incident shocks or ramps. von Kármán Institute PR 70–226.
Carter, J. E. 1972 Numerical solution of the Navier–Stokes equations for the supersonic laminar flow over a two-dimensional compression corner. NASA TR R 385.Google Scholar
Chapman, D. R. & Rubesin, M. W. 1949 Temperature and velocity profiles in the compressible laminar boundary layer with arbitrary distribution of surface temperature. J. Aero. Sci. 16 (9), 547565.Google Scholar
Chapman, D. R., Kuehn, D. M. & Larson, H. K. 1958 Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition. NACA TR 1356.Google Scholar
Crocco, L. & Lees, L. 1952 A mixing theory for the interaction between dissipative flows and nearly isentropic streams. J. Aero. Sci. 19 (10), 649676.Google Scholar
Dawes, W. N. 1983 Efficient implicit algorithm for the equations of 2D viscous compressible flow: application to shock boundary layer interaction, Intl J. Heat & Fluid Flow 4 (1), 1726.Google Scholar
Degrez, G. 1984 Etude théorique et expérimentale d'interactions bi- et tridimensionnelles entre ondes de choc et couches limites laminaires. Thèse de Doctorat, Université Libre de Bruxelles.
Degrez, G., Boccadoro, C. H. & Wendt, J. F. 1984 LDV velocity measurements in thin laminar boundary layers, separated and unseparated, and comparison with numerical computations. ICAS paper 84–2.3.1; also von Kármán Institute Preprint 8416.
Durst, F., Melling, A. & Whitelaw, J. A. 1976 Principles and Practice of Laser Doppler Anemometry. Academic.
Ginoux, J. J. 1968 Supersonic separated flows over wedges and flares with emphasis on a method of detecting transition. von Kármán Institute TN 47.
Gkeen, J. E. 1970 Interactions between shock waves and turbulent boundary layers. Proc. Aerospace Sci. 11, 235340.Google Scholar
Hakkinen, R. J., Greber, I., Trilling, L. & Abarbanel, S. S. 1959 The interaction of an oblique shock wave with a laminar boundary layer. NASA Memo 2–18–59 W.Google Scholar
Hanin, M., Wolfshtein, M. & Landau, U. E. 1974 Numerical solution of Navier–Stokes equations for interaction of shock wave with laminar boundary layer. ICAS 74 –17.Google Scholar
Hankey, W. L. & Holden, M. S. 1975 Two dimensional shock wave boundary layer interactions in high speed flows. AGARDograph 203.Google Scholar
Kubota, T. & Ko, D. R. S. 1967 A second order weak interaction expansion for moderately hyersonic flow past a flat plate. AIAA J. 5 (10), 19151917.Google Scholar
Lees, L. & Reeves, B. L. 1964 Supersonic separated and reattaching flows. Part 1. General theory and application to adiabatic boundary layers/shock wave interactions. AIAA J. 2 (11), 19071920.Google Scholar
Lewis, J. E., Kubota, T. & Lees, L. 1968 Experimental investigation of supersonic, laminar, two-dimensional boundary layer separation in a compression corner with and without cooling. AIAA J. 6 (1), 714.Google Scholar
Maccormack, R. W. 1971 Numerical solution of the interaction of a shock wave with a laminar boundary layer. In Proc. 2nd Intl Conf. on Num. Methods in Fluid Dyn., Univ. of California, 1970. Lecture Notes in Physics, vol. 8, pp. 151163. Springer.
Maccormack, R. W. 1982 A numerical method for solving the equations of compressible viscous flow. AIAA J. 20 (9), 12751281.Google Scholar
Modarress, D. & Johnson, D. A. 1979 Investigation of turbulent boundary layer separation using laser velocimetry. AIAA J. 17 (7), 707792.Google Scholar
Reda, D. C. & Murphy, J. D. 1973a Shock wave/turbulent boundary layer interactions in rectangular channels. AIAA J. 11 (2), 139140.Google Scholar
Reda, D. C. & Murphy, J. D. 1973b Sidewall boundary layer influence on shock wave/turbulent boundary layer interactions. AIAA J. 11 (10), 13671368.Google Scholar
Schütz, N. S. 1985 Effect of seeding particle size on LDV measurements in a compressible boundary layer. von Kármán Institute PR 198506.
Sfeir, A. A. 1970 Interaction d'une couche limite laminaire avec une onde de choc dans un coin de compression. Rev. Roum. Sci. Tech. Méc. Appl. 15 (6), 13751391.Google Scholar
Skoglund, U. J. & Gay, B. D. 1969 Improved numerical techniques and solution of a separated interaction of an oblique shock wave and a laminar boundary layer. Research Rep. ME41(69)–068, Bureau of Engng, University of New Mexico, USA.Google Scholar
Thomas, P. D. 1979 Numerical method for predicting flow characteristics and performance of non-axisymmetric nozzles. Theory. NASA CR 3147.Google Scholar
Vorropoulos, G. & Wendt, J. E. 1983 Laser velocimetry study of compressibility effects on the flow field of a delta wing. In Aerodynamics of Vortical Type Flows in Three Dimensions. AGARD CP 343, paper 9; also von Kármán Institute Preprint 1983–15.
Warming, R. F. & Beam, R. M. 1978 On the construction and application of implicit factored schemes for conservation laws. SIAM–AMS Proc. vol. 11, pp. 85129.
Warming, R. F. & Beam, R. M. 1979 An extension of A-stability to alternating direction implicit methods. BIT 19, 345417.Google Scholar