Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T23:43:13.219Z Has data issue: false hasContentIssue false

Intrusions propagating into linearly stratified ambients

Published online by Cambridge University Press:  13 April 2018

M. A. Khodkar
Affiliation:
Department of Mechanical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
K. El Allam
Affiliation:
Department of Mechanical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, USA Graduate School of Engineering, ENSEIRB-MATMECA, 33400 Talence, France
E. Meiburg*
Affiliation:
Department of Mechanical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
*
Email address for correspondence: meiburg@engineering.ucsb.edu

Abstract

Equilibrium and non-equilibrium intrusions released from long, full-depth locks and advancing into linearly stratified ambients are investigated via a vorticity-based modelling approach, for the constant-velocity slumping phase. Non-equilibrium intrusions give rise to an upstream-propagating wave, which we model as a bore. Predictions by the vorticity model agree closely with two-dimensional direct numerical simulation results and earlier experimental and computational data regarding front velocities, current thicknesses as well as the height and propagation velocity of the bore.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bolster, D. T., Hang, A. & Linden, P. F. 2008 The front speed of intrusions into a continuously stratified medium. J. Fluid Mech. 594, 369377.10.1017/S0022112007008993Google Scholar
Borden, Z. & Meiburg, E. 2013a Circulation-based models for boussinesq gravity currents. Phys. Fluids 25 (10), 101301.10.1063/1.4825035Google Scholar
Borden, Z. & Meiburg, E. 2013b Circulation-based models for boussinesq internal bores. J. Fluid Mech. 726, R1.10.1017/jfm.2013.239Google Scholar
Cheong, H.-B., Kuenen, J. J. P. & Linden, P. F. 2006 The front speed of intrusive gravity currents. J. Fluid Mech. 552, 111.10.1017/S002211200500772XGoogle Scholar
Flynn, M. R. & Linden, P. F. 2006 Intrusive gravity currents. J. Fluid Mech. 568, 193202.10.1017/S0022112006002734Google Scholar
Holyer, J. Y. & Huppert, H. E. 1980 Gravity currents entering a two-layer fluid. J. Fluid Mech. 100, 739767.10.1017/S0022112080001383Google Scholar
Khodkar, M. A., Nasr-Azadani, M. M. & Meiburg, E. 2016 Intrusive gravity currents propagating into two-layer stratified ambients: vorticity modeling. Phys. Rev. Fluids 1 (4), 044302.10.1103/PhysRevFluids.1.044302Google Scholar
Long, R. R. 1953 Some aspects of the flow of stratified fluids. I. A theoretical investigation. Tellus 5, 4258.10.3402/tellusa.v5i1.8563Google Scholar
Lowe, R. J., Linden, P. F. & Rottman, J. W. 2002 A laboratory study of the velocity structure in an intrusive gravity current. J. Fluid Mech. 456, 3348.10.1017/S0022112001007303Google Scholar
Maurer, B. D., Bolster, D. T. & Linden, P. F. 2010 Intrusive gravity currents between two stably stratified fluids. J. Fluid Mech. 647, 5369.10.1017/S0022112009993752Google Scholar
Maurer, B. D. & Linden, P. F. 2014 Intrusion-generated waves in a linearly stratified fluid. J. Fluid Mech. 752, 282295.10.1017/jfm.2014.316Google Scholar
Maxworthy, T., Leilich, J., Simpson, J. E. & Meiburg, E. H. 2002 The propagation of a gravity current into a linearly stratified fluid. J. Fluid Mech. 453, 371394.10.1017/S0022112001007054Google Scholar
McEwan, A. D. & Baines, P. G. 1974 Shear fronts and an experimental stratifed shear flow. J. Fluid Mech. 63, 257272.10.1017/S0022112074001133Google Scholar
Munroe, J. R., Voegeli, C., Birman, V., Sutherland, B. R. & Meiburg, E. H. 2009 The front speed of intrusions into a continuously stratified medium. J. Fluid Mech. 635, 245273.10.1017/S0022112009007563Google Scholar
Nasr-Azadani, M. M., Hall, B. & Meiburg, E. 2013 Polydisperse turbidity currents propagating over complex topography: comparison of experimental and depth-resolved simulation results. Comput. Geosci. 53, 141153.10.1016/j.cageo.2011.08.030Google Scholar
Nasr-Azadani, M. M. & Meiburg, E. 2011 TURBINS: an immersed boundary, Navier–Stokes code for simulation of gravity and turbidity currents interacting with complex topographies. J. Comput. Fluids 45 (1), 1428.10.1016/j.compfluid.2010.11.023Google Scholar
Nasr-Azadani, M. M. & Meiburg, E. 2016 Gravity currents propagating into ambients with arbitrary shear and density stratification: vorticity-based modelling. Q. J. R. Meteorol. Soc. 778, 13591370.10.1002/qj.2739Google Scholar
de Rooij, F., Linden, P. F. & Dalziel, S. B. 1999 Saline and particle-driven interfacial intrusions. J. Fluid Mech. 389, 303334.10.1017/S0022112099005078Google Scholar
Sutherland, B. R., Kyba, P. J. & Flynn, M. R. 2004 The front speed of intrusive gravity currents. J. Fluid Mech. 514, 327353.10.1017/S0022112004000394Google Scholar
Ungarish, M. 2005 Intrusive gravity currents in a stratified ambient: shallow-water theory and numerical results. J. Fluid Mech. 535, 287323.10.1017/S0022112005004854Google Scholar
Ungarish, M. 2006 On gravity currents in a linearly stratified ambient: a generalization of Benjamin’s steady-state propagation results. J. Fluid Mech. 548, 4968.10.1017/S0022112005007421Google Scholar
Ungarish, M. 2009 An Introduction to Gravity Currents and Intrusions. Chapman & Hall/CRC Press.10.1201/9781584889045Google Scholar
Ungarish, M. & Huppert, H. E. 2002 On gravity currents propagating at the base of a stratified ambient. J. Fluid Mech. 458, 283301.10.1017/S0022112002007978Google Scholar
Ungarish, M. & Huppert, H. E. 2006 Energy balances for propagating gravity currents: homogeneous and stratified ambients. J. Fluid Mech. 565, 363380.10.1017/S0022112006001455Google Scholar
White, B. L. & Helfrich, K. R. 2008 Gravity currents and internal waves in a stratified fluid. J. Fluid Mech. 616, 327356.10.1017/S0022112008003984Google Scholar