Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T20:15:18.971Z Has data issue: false hasContentIssue false

Investigation of suction for laminar flow control of three-dimensional boundary layers

Published online by Cambridge University Press:  30 June 2010

RALF MESSING
Affiliation:
Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, D-70550 Stuttgart, Germany
MARKUS J. KLOKER*
Affiliation:
Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, D-70550 Stuttgart, Germany
*
Email address for correspondence: kloker@iag.uni-stuttgart.de

Abstract

Direct numerical simulations are employed to investigate the effects of discrete suction orifices at the wall on the disturbance evolution in laminar three-dimensional boundary-layer flows with favourable pressure gradient. Suction panels with many suction orifices can excite unstable crossflow (CF) modes even if the orifice spacing is smaller than the chordwise/spanwise wavelengths of unstable modes, caused by imperfections in the orifice order or suction strength. It has been found that the most unstable steady vortex mode leads to strong CF vortices that invoke turbulence by secondary instability even on the active suction panel. The deliberate excitation and support of stabilizing vortices that have less than two-thirds of the spanwise wavelength of the most amplified ones – known from the upstream flow deformation or micrometre-sized roughness elements technique – by the orifice order on the panel can secure the desired stabilizing effect of suction and lower the necessary suction amount significantly.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abegg, C., Bippes, H. & Bertolotti, F. P. 1999 On the application of suction for the stabilization of crossflow instability over perforated walls. In New Results in Numerical and Experimental Fluid Dynamics (ed. Nitsche, W. G., Heinemann, H.-J. & Hilbig, R.), vol. II, Proceedings of the 11th AG STAB/DGLR Symposium, Notes on Numerical Fluid Mechanics, vol. 72. Vieweg.Google Scholar
Abegg, C., Bippes, H. & Janke, E. 2000 Stabilization of boundary-layer flows subject to crossflow instability with the aid of suction. In Laminar–Turbulent Transition (ed. Fasel, H. F. & Saric, W. S.), Proceedings of the IUTAM Symposium, Sedona 1999. Springer.Google Scholar
Arnal, D. 1996 The EUROTRANS project. In Proceedings of the 2nd European Forum on Laminar Flow Technology, Bordeaux, France.Google Scholar
Arnal, D., Seraudie, A. & Archambaud, J. P. 2000 Influence of surface roughness and suction on the receptivity of a swept wing boundary layer. In Laminar–Turbulent Transition (ed. Fasel, H. F. & Saric, W. S.), Proceedings of the IUTAM Symposium, Sedona 1999. Springer.Google Scholar
Bertolotti, F. P. 2003 The equivalent forcing model for receptivity analysis with application to the construction of a high-performance skin perforation pattern for LFC. In Recent Results in Laminar–Turbulent Transition (ed. Wagner, S., Kloker, M. J. & Rist, U.), Selected numerical and experimental contributions from the DFG priority programme ‘Transition’ in Germany, Notes on Numerical Fluid Mechanics, vol. 86, pp. 2536. Springer.Google Scholar
Bestek, H., Müller, W., Kloker, M. J. & Bieler, H. 1996 Effect of discrete suction strips on the stability of 3D-boundary layers: direct numerical simulation for boundary layer flow modelling. In Proceedings of the 2nd European Forum on Laminar Flow Technology, Bordeaux, France.Google Scholar
Bippes, H. 1999 Basic experiments on transition in three-dimensional boundary layers dominated by crossflow instability. Prog. Aerosp. Sci. 35, 363412.CrossRefGoogle Scholar
Bonfigli, G. & Kloker, M. J. 1999 Spatial Navier–Stokes simulation of crossflow-induced transition in a 3-D boundary layer. In New Results in Numerical and Experimental Fluid Dynamics (ed. Nitsche, W. G., Heinemann, H.-J. & Hilbig, R.), vol. II, Proceedings of the 11th AG STAB/DGLR Symposium, 1998, Notes on Numerical Fluid Mechanics, vol. 72, pp. 6168. Vieweg.CrossRefGoogle Scholar
Bonfigli, G. & Kloker, M. J. 2007 Secondary instability of crossflow vortices: validation of the stability theory by direct numerical simulation. J. Fluid Mech. 583, 229272.CrossRefGoogle Scholar
Bulgubure, C. & Arnal, D. 1992 Dassault Falcon 50 laminar flow flight demonstrator. In DGLR-Bericht 92-06, Proceedings of the First European Forum on Laminar Flow Technology, Hamburg, Germany.Google Scholar
Goldsmith, J. 1957 Critical laminar suction parameters for suction into an isolated hole or a single row of holes. Rep. BLC-95. Northrop Aircraft.Google Scholar
Gregory, N. 1961 Research on suction surfaces for laminar flow. In Boundary Layer and Flow Control (ed. Lachmann, G. V.), vol. 2, pp. 924960, Pergamon.CrossRefGoogle Scholar
Joslin, R. D. 1998 a Overview of laminar flow control. TP-1998-208705. NASA Langley Research Center, Hampton, VA.Google Scholar
Joslin, R. D. 1998 b Aircraft laminar flow control. Annu. Rev. Fluid Mech. 30, 129.CrossRefGoogle Scholar
Kloker, M. J. 2008 Advanced laminar flow control on a swept wing: useful crossflow vortices and suction. Paper 2008-3835. AIAA.CrossRefGoogle Scholar
MacManus, D. G. & Eaton, J. A. 1996 Micro-scale three-dimensional Navier–Stokes investigation of laminar flow control suction hole configurations. Paper 96-0544. AIAA.CrossRefGoogle Scholar
MacManus, D. G. & Eaton, J. A. 1998 Measurement and analysis of the flowfields induced by suction perforations. AIAA J. 36 (9), 15531561.CrossRefGoogle Scholar
MacManus, D. G. & Eaton, J. A. 2000 Flow physics of discrete boundary layer suction: measurements and predictions. J. Fluid Mech. 417, 4775.CrossRefGoogle Scholar
MacManus, D. G., Eaton, J. A., Barrett, R., Rickards, J. & Swales, C. 1996 Mapping the flow field induced by a HLFC perforation using a high resolution LDV. Paper 96-0097. AIAA.CrossRefGoogle Scholar
Maddalon, D. V. 1991 Hybrid laminar-flow control flight research. Tech. Rep. TM-4331, p. 47. Research and Technology, NASA.Google Scholar
Maddalon, D. V., Collier, F. S., Montoya, L. C. & Land, C. K. 1989 Transition flight experiments on a swept wing with suction. Paper 89-1893. AIAA.CrossRefGoogle Scholar
Meitz, H. L. & Fasel, H. F. 1995 Numerical simulation of boundary-layer flow over suction holes. In Laminar–Turbulent Transition (ed. Kobayashi, R.), Proceedings of the IUTAM Symposium, Sendai, Japan, 1994. Springer.Google Scholar
Messing, R. 2004 Direkte numerische Simulationen zur diskreten Absaugung in einer dreidimensionalen Grenzschichtströmung. PhD thesis, Universität Stuttgart. Shaker, Aachen, Germany.Google Scholar
Messing, R., Kloker, M. J. & Wagner, S. 1998 Direct numerical simulation of suction through discrete holes in a three-dimensional boundary layer. In New Results in Numerical and Experimental Fluid Dynamics (ed. Nitsche, W. & Hilbig, R.), STAB/DGLR Symposium, Berlin, Notes on Numerical Fluid Mechanics, vol. 11. Vieweg.Google Scholar
Müller, W., Kloker, M. J. & Bestek, H. 1992 Numerical investigation of the effect of local suction on transition in a boundary layer with adverse pressure gradient. In DGLR-Bericht 92-06, Proceedings of the First European Forum on Laminar Flow Technology, Hamburg, Germany.Google Scholar
Pfenninger, W. 1965 Some results from the X-21 A program. Part 1. Flow phenomena at the leading edge of swept wings. In Recent Developments in Boundary Layer Research, Part IV, AGARDograph 97.Google Scholar
Pralits, J. O. & Hanifi, A. 2003 Optimization of steady suction for disturbance control on infinite swept wings. Phys. Fluids 15 (9), 27562772.CrossRefGoogle Scholar
Pralits, J. O., Hanifi, A. & Henningson, D. S. 2002 Adjoint-based optimization of steady suction for disturbance control in incompressible flows. J. Fluid Mech. 467, 129161.CrossRefGoogle Scholar
Reneaux, J. & Blanchard, A. 1992 The design and testing of an airfoil with hybrid laminar flow control. In DGLR-Bericht 92-06, Proceedings of the First European Forum on Laminar Flow Technology, Hamburg, Germany.Google Scholar
Spalart, P. R. 1993 Numerical study of transition induced by suction devices. In Proceedings of the International Conference: Near-Wall Turbulent Flows (ed. So, R. M. C., Speziale, C. G. & Launders, B. E.), Tempe, AZ, pp. 849858.Google Scholar
Swarztrauber, P. N. 1977 The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poissons equation on a rectangle. SIAM Rev. 19 (3), 490501.CrossRefGoogle Scholar
Thibert, J. J., Quast, A. & Robert, J. P. 1992 The A320 laminar fin programme. In DGLR-Bericht 92-06, Proceedings of the First European Forum on Laminar Flow Technology, Hamburg, Germany.Google Scholar
Wassermann, P. & Kloker, M. J. 2002 Mechanisms and passive control of crossflow-vortex induced transition in a three-dimensional boundary layer. J. Fluid Mech. 456, 4984.CrossRefGoogle Scholar
Wassermann, P. & Kloker, M. J. 2003 Transition mechanisms induced by travelling crossflow vortices in a three-dimensional boundary layer. J. Fluid Mech. 483, 6789.CrossRefGoogle Scholar
Wassermann, P. & Kloker, M. J. 2005 Transition mechanisms in a three-dimensional boundary-layer flow with pressure-gradient changeover. J. Fluid Mech. 530, 265293.CrossRefGoogle Scholar
Wortmann, F. X. & Weise, A. 1970 Der Einfluß der Absaugung durch Poren in der Wand auf die Instabilität laminarer Grenzschichten. Abschlußbericht DFG-We 11/37. Institut für Aeround Gasdynamik, Universität Stuttgart, Germany.Google Scholar