Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T08:20:28.508Z Has data issue: false hasContentIssue false

Laboratory studies of the role of bandwidth in surface transport and energy dissipation of deep-water breaking waves

Published online by Cambridge University Press:  20 September 2021

James T. Sinnis*
Affiliation:
Department of Physics, University of Washington, Seattle, WA98195, USA
Laurent Grare
Affiliation:
Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92037, USA
Luc Lenain
Affiliation:
Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92037, USA
Nick Pizzo
Affiliation:
Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92037, USA
*
Email address for correspondence: jsinnis@uw.edu

Abstract

This paper presents laboratory measurements of surface transport due to non-breaking and breaking deep-water focusing surface wave packets and examines the dependence of the transport on the wave packet bandwidth, $\varDelta$. This extends the work of Deike et al. (J. Fluid Mech., vol. 829, 2017, pp. 364–391) and Lenain et al. (J. Fluid Mech., vol. 876, 2019, p. R1), where similar numerical and laboratory experiments were conducted, but the bandwidth was held constant. In this paper, it is shown that the transport is strongly affected by the bandwidth. A model for the horizontal length scale of the breaking region is proposed that incorporates the bandwidth, central frequency, the linear prediction of the slope at focusing and the breaking threshold slope of the wave packet. This is then evaluated with data from archived and new laboratory experiments, and agreement is found. Furthermore, the horizontal length scale of the breaking region implies modifications to the model of the energy dissipation rate from Drazen et al. (J. Fluid Mech., vol. 611, 2008, pp. 307–332). This modification accounts for differing trends in the dissipation rate caused by the bandwidth in the available laboratory data.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Banner, M.L., Barthelemy, X., Fedele, F., Allis, M., Benetazzo, A., Dias, F. & Peirson, W.L. 2014 Linking reduced breaking crest speeds to unsteady nonlinear water wave group behavior. Phys. Rev. Lett. 112 (11), 114502.CrossRefGoogle ScholarPubMed
Banner, M.L. & Peirson, W.L. 2007 Wave breaking onset and strength for two-dimensional deep-water wave groups. J. Fluid Mech. 585 (1), 93115.CrossRefGoogle Scholar
Belcher, S.E., et al. 2012 A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett. 39 (18), L18605.CrossRefGoogle Scholar
van den Bremer, T.S. & Breivik, Ø. 2018 Stokes drift. Phil. Trans. R. Soc. Lond. A 376 (2111), 20170104.Google ScholarPubMed
De Vita, F., Verzicco, R. & Iafrati, A. 2018 Breaking of modulated wave groups: kinematics and energy dissipation processes. J. Fluid Mech. 855, 267298.CrossRefGoogle Scholar
Deike, L., Melville, W.K. & Popinet, S. 2016 Air entrainment and bubble statistics in breaking waves. J. Fluid Mech. 801, 91129.CrossRefGoogle Scholar
Deike, L., Pizzo, N.E. & Melville, W.K. 2017 Lagrangian transport by breaking surface waves. J. Fluid Mech. 829, 364391.CrossRefGoogle Scholar
Deike, L., Popinet, S. & Melville, W.K. 2015 Capillary effects on wave breaking. J. Fluid Mech. 769, 541569.CrossRefGoogle Scholar
Derakhti, M., Banner, M.L. & Kirby, J.T. 2018 Predicting the breaking strength of gravity water waves in deep and intermediate depth. J. Fluid Mech. 848, R2.CrossRefGoogle Scholar
Derakhti, M. & Kirby, J.T. 2016 Breaking-onset, energy and momentum flux in unsteady focused wave packets. J. Fluid Mech. 790, 553581.CrossRefGoogle Scholar
Drazen, D.A., Melville, W.K. & Lenain, L. 2008 Inertial scaling of dissipation in unsteady breaking waves. J. Fluid Mech. 611, 307332.CrossRefGoogle Scholar
Drazen, D.A & Melville, W.K. 2009 Turbulence and mixing in unsteady breaking surface waves. J. Fluid. Mech. 628, 85119.CrossRefGoogle Scholar
Duncan, J.H. 1981 An experimental investigation of breaking waves produced by a towed hydrofoil. Proc. R. Soc. Lond. A 377 (1770), 331348.Google Scholar
Duncan, J.H. 1983 The breaking and non-breaking wave resistance of a two-dimensional hydrofoil. J. Fluid Mech. 126, 507520.CrossRefGoogle Scholar
Fedele, F. 2014 On certain properties of the compact Zakharov equation. J. Fluid Mech. 748, 692711.CrossRefGoogle Scholar
Grare, L., Peirson, W.L., Branger, H., Walker, J.W., Giovanangeli, J.-P. & Makin, V. 2013 Growth and dissipation of wind-forced, deep-water waves. J. Fluid Mech. 722, 550.CrossRefGoogle Scholar
Hornung, H.G., Willert, C. & Turner, S. 1995 The flow field downstream of a hydraulic jump. J. Fluid Mech. 287, 299316.CrossRefGoogle Scholar
Kenyon, K.E. 1969 Stokes drift for random gravity waves. J. Geophys. Res. 74 (28), 69916994.CrossRefGoogle Scholar
Leibovich, S. 1983 The form and dynamics of Langmuir circulations. Annu. Rev. Fluid Mech. 15 (1), 391427.CrossRefGoogle Scholar
Lenain, L., Pizzo, N. & Melville, W.K. 2019 Laboratory studies of lagrangian transport by breaking surface waves. J. Fluid Mech. 876, R1.CrossRefGoogle Scholar
Li, Q., Webb, A., Fox-Kemper, B., Craig, A., Danabasoglu, G., Large, W.G. & Vertenstein, M. 2016 Langmuir mixing effects on global climate: wavewatch III in CESM. Ocean Model. 103, 145160.CrossRefGoogle Scholar
Longuet-Higgins, M.S. 1974 Breaking waves in deep or shallow water. In Proceedings of the 10th Symposium on Naval Hydrodynamics (ed. R.D. Cooper & S.D. Doroff), pp. 597–605. Office of Naval Research, Arlington, Virginia.Google Scholar
Longuet-Higgins, M.S. 1978 The instabilities of gravity waves of finite amplitude in deep water II. Subharmonics. Proc. R. Soc. Lond. A 360 (1703), 489505.Google Scholar
Longuet-Higgins, M.S. & Fox, M.J.H. 1977 Theory of the almost-highest wave: the inner solution. J. Fluid Mech. 80 (04), 721741.CrossRefGoogle Scholar
Longuet-Higgins, M.S. & Turner, J.S. 1974 An ‘entraining plume’ model of a spilling breaker. J. Fluid Mech. 63 (1), 120.CrossRefGoogle Scholar
McLean, J. 1982 Instabilities of finite amplitude water waves. J. Fluid Mech. 114, 315330.CrossRefGoogle Scholar
McWilliams, J.C., Sullivan, P.P. & Moeng, C.-H. 1997 Langmuir turbulence in the ocean. J. Fluid Mech. 334, 130.CrossRefGoogle Scholar
Melling, A. 1997 Tracer particles and seeding for particle image velocimetry. Meas. Sci. Technol. 8 (12), 1406.CrossRefGoogle Scholar
Melville, W.K. 1994 Energy dissipation by breaking waves. J. Phys. Oceanogr. 24 (10), 20412049.2.0.CO;2>CrossRefGoogle Scholar
Melville, W.K., Veron, F. & White, C.J. 2002 The velocity field under breaking waves: coherent structure and turbulence. J. Fluid. Mech. 454, 203233.CrossRefGoogle Scholar
Perlin, M., Choi, W. & Tian, Z. 2013 Breaking waves in deep and intermediate waters. Annu. Rev. Fluid Mech. 45, 115145.CrossRefGoogle Scholar
Phillips, O.M. 1985 Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech. 156 (1), 505531.CrossRefGoogle Scholar
Pizzo, N.E. 2017 Surfing surface gravity waves. J. Fluid Mech. 823, 316328.CrossRefGoogle Scholar
Pizzo, N.E. & Melville, W.K. 2019 Focusing deep-water surface gravity wave packets: wave breaking criterion in a simplified model. J. Fluid Mech. 873, 238259.CrossRefGoogle Scholar
Pizzo, N.E., Melville, W.K. & Deike, L. 2019 Lagrangian transport by nonbreaking and breaking deep-water waves at the ocean surface. J. Phys. Oceanogr. 49 (4), 983992.CrossRefGoogle Scholar
Pizzo, N.E. & Melville, W.K. 2013 Vortex generation by deep-water breaking waves. J. Fluid Mech. 734, 198218.CrossRefGoogle Scholar
Pizzo, N.E. & Melville, W.K. 2016 Wave modulation: the geometry, kinematics, and dynamics of surface-wave packets. J. Fluid Mech. 803, 275291.CrossRefGoogle Scholar
Rapp, R.J. & Melville, W.K. 1990 Laboratory measurements of deep-water breaking waves. Phil. Trans. R. Soc. Lond. A 331 (1622), 735800.Google Scholar
Romero, L., Melville, W.K. & Kleiss, J.M 2012 Spectral energy dissipation due to surface wave breaking. J. Phys. Oceanogr. 42 (9), 14211444.CrossRefGoogle Scholar
Stansell, P. & MacFarlane, C. 2002 Experimental investigation of wave breaking criteria based on wave phase speeds. J. Phys. Oceanogr. 32 (5), 12691283.2.0.CO;2>CrossRefGoogle Scholar
Stokes, G.G. 1847 On the theory of oscillatory waves. Trans. Camb. Phil. Soc. 8, 441473.Google Scholar
Sullivan, P.P, McWilliams, J.C & Melville, W.K. 2004 The oceanic boundary layer driven by wave breaking with stochastic variability. Part 1. Direct numerical simulations. J. Fluid Mech. 507, 143174.CrossRefGoogle Scholar
Sullivan, P.P, McWilliams, J.C & Melville, W.K. 2007 Surface gravity wave effects in the oceanic boundary layer: large-eddy simulation with vortex force and stochastic breakers. J. Fluid Mech. 593, 405452.CrossRefGoogle Scholar
Taylor, G.I. 1935 Statistical theory of turbulence. Proc. R. Soc. Lond. A 151 (873), 421444.CrossRefGoogle Scholar
Tian, Z., Perlin, M. & Choi, W. 2010 Energy dissipation in two-dimensional unsteady plunging breakers and an eddy viscosity model. J. Fluid Mech. 655, 217257.CrossRefGoogle Scholar
Vinje, T. & Brevig, P. 1981 Numerical simulation of breaking waves. Adv. Water Resour. 4 (2), 7782.CrossRefGoogle Scholar