Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T08:04:24.416Z Has data issue: false hasContentIssue false

Lagrangian conditional statistics, acceleration and local relative motion in numerically simulated isotropic turbulence

Published online by Cambridge University Press:  14 June 2007

P. K. YEUNG
Affiliation:
School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
S. B. POPE
Affiliation:
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
E. A. KURTH
Affiliation:
School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
A. G. LAMORGESE
Affiliation:
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA

Abstract

Lagrangian statistics of fluid-particle velocity and acceleration conditioned on fluctuations of dissipation, enstrophy and pseudo-dissipation representing different characteristics of local relative motion are extracted from a direct numerical simulation database of stationary (forced) homogeneous isotropic turbulence. The grid resolution in the simulations is up to 20483, and the Taylor-scale Reynolds number ranges from about 40 to 650, where characteristics of small-scale intermittency in the Eulerian flow field are well developed. A key joint statistic of the conditioning variables is the dissipation-enstrophy cross-correlation, which is asymmetric, but becomes less so at high Reynolds number. Conditional velocity autocorrelations are consistent with rapid changes in the velocity of fluid particles moving in regions of large velocity gradients. Examination of statistics conditioned upon enstrophy, especially in a local coordinate frame moving with the vorticity vector, and of the centripetal acceleration suggests the presence of vortex-trapping effects which persist for several Kolmogorov time scales. Further results on acceleration statistics and joint velocity-acceleration autocorrelations are also presented to help characterize in detail the properties of a joint stochastic process of velocity, acceleration and the pseudo-dissipation. Together with recent work on Eulerian conditional acceleration and Reynolds-number dependence of basic Lagrangian quantities, the present results are directly useful for the development of a new stochastic model formulated to account for intermittency and Reynolds-number effects as described in detail in a companion paper.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bec, J., Biferale, L., Cencini, M., Lanotte, A. & Toschi, F. 2006 Effect of vortex filaments on the velocity of tracers and heavy particles in turbulence. Phys. Fluids 18, 081702.CrossRefGoogle Scholar
Berg, J., Luthi, B., Mann, J. & Ott, S. 2006 Backwards and forwards relative dispersion in turbulent flow: an experimental investigation. Phys. Rev. E 74, 016304.Google ScholarPubMed
Biferale, L. & Toschi, F. 2006 Joint statistics of acceleration and vorticity in fully developed turbulence. J. Turbulence 6 (10), 18.Google Scholar
Biferale, L., Boffetta, G., Celani, A., Devenish, B. J., Lanotte, A. & Toschi, F. 2004 Multifractal statistics of Lagrangian velocity and acceleration in turbulence. Phys. Rev. Lett. 93, 064502.CrossRefGoogle ScholarPubMed
Biferale, L., Boffetta, G., Celani, A., Lanotte, A. & Toschi, F. 2005 Particle trapping in three-dimensional fully developed turbulence. Phys. Fluids 17, 021701.CrossRefGoogle Scholar
Chen, S., Sreenivasan, K. R. & Nelkin, M. 1997 Inertial range scalings of dissipation and enstrophy in isotropic turbulence. Phys. Rev. Lett. 79, 12531256.CrossRefGoogle Scholar
Chevillard, L., Roux, S. G., Leveque, E., Mordant, N., Pinton, J. F. & Arneo, A. 2003 Lagrangian velocity statistics in turbulent flows: effects of dissipation. Phys. Rev. Lett. 91, 214502.CrossRefGoogle ScholarPubMed
Crawford, A. M., Mordant, N. & Bodenschatz, E. 2005 Joint statistics of the Lagrangian acceleration and velocity in fully developed turbulence. Phys. Rev. Lett. 94, 024501.CrossRefGoogle ScholarPubMed
Eswaran, V. & Pope, S. B. 1988 An examination of forcing in direct numerical simulations of turbulence. Computers Fluids 16, 257278.CrossRefGoogle Scholar
Guala, M., Liberzon, A., Kinzelbach, W. & Tsinober, A. 2006 Stretching and tilting of material lines in turbulence: the effect of strain and vorticity. Phys. Rev. E 73, 036303.Google ScholarPubMed
Kronenburg, A. & Bilger, R. W. 1997 Modelling of differential diffusion effects in nonpremixed nonreacting turbulent flow. Phys. Fluids 9, 14351447.CrossRefGoogle Scholar
LaPorta, A., Voth, G. A., Crawford, A. M., Alexander, J. & Bodenschatz, E. 2001 Fluid particle accelerations in fully developed turbulence. Nature 409, 1017.CrossRefGoogle Scholar
Lamorgese, A. G., Pope, S. B., Yeung, P. K. & Sawford, B. L. 2007 A conditionally cubic-Gaussian stochastic Lagrangian model for acceleration in isotropic turbulence. J. Fluid Mech. 582, 423448.CrossRefGoogle Scholar
Luthi, B., Tsinober, A. & Kinzelbach, W. 2005 Lagrangian measurement of vorticity dynamics in turbulent flow. J. Fluid Mech. 528, 87118.CrossRefGoogle Scholar
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, vol. 2. MIT Press, Cambridge, MA.Google Scholar
Mordant, N., Metz, P., Michel, O. & Pinton, J.-F. 2001 Measurement of Lagrangian velocity in fully developed turbulence. Phys. Rev. Lett. 87, 214501.CrossRefGoogle ScholarPubMed
Mordant, N., Crawford, A. M. & Bodenschatz, E. 2004 Experimental Lagrangian acceleration probability density function measurement. Physica D 193, 245251.Google Scholar
Nelkin, M. 1999 Energy and dissipation must have the same scaling exponent in the high Reynolds number limit of fluid turbulence. Phys. Fluids 11, 22022204.CrossRefGoogle Scholar
Ouellette, N. T., Xu, H. T. & Bodenschatz, E. 2006 A quantitative study of three-dimensional Lagrangian particle tracking algorithms. Exps. Fluids 40, 301313.CrossRefGoogle Scholar
Pope, S. B. 1985 PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119192.Google Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Pope, S. B. 2002 A stochastic Lagrangian model for acceleration in turbulent flows. Phys. Fluids 14, 23602375.CrossRefGoogle Scholar
Pope, S. B. & Chen, Y. L. 1990 The velocity-dissipation probability density function model for turbulent flows. Phys. Fluids A 2, 14371449.CrossRefGoogle Scholar
Reynolds, A. M. 2003 a On the application of non-extensive statistics to Lagrangian turbulence. Phys. Fluids 15, L1.Google Scholar
Reynolds, A. M. 2003 b Superstatistical mechanics of tracer particle motions in turbulence. Phys. Rev. Lett. 91, 084503.CrossRefGoogle ScholarPubMed
Reynolds, A. M., Mordant, N., Crawford, A. M. & Bodenschatz, E. 2005 On the distribution of Lagrangian accelerations in turbulent flows. New J. Phys. 7, art. 58.CrossRefGoogle Scholar
Rogallo, R. S. 1981 Numerical experiments in homogeneous turbulence. NASA T.M 81315.Google Scholar
Sawford, B. L. 1991 Reynolds number effects in Lagrangian stochastic models of turbulent dispersion. Phys. Fluids A 3, 15771586.CrossRefGoogle Scholar
Sawford, B. L. 2001 Turbulent relative dispersion. Annu. Rev. Fluid Mech. 33, 289317.CrossRefGoogle Scholar
Sawford, B. L., Yeung, P. K., Borgas, M. S., Vedula, P., Crawford, A. M., LaPorta, A. & Bodenschatz, E. 2003 Acceleration variance and conditional variance statistics in turbulence. Phys. Fluids 15, 34783489.CrossRefGoogle Scholar
Sreenivasan, K. R. 1998 An update on the dissipation range in homogeneous turbulence. Phys. Fluids 10, 528529.CrossRefGoogle Scholar
Sreenivasan, K. R. & Antonia, R. A. 1997 The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29, 435472.CrossRefGoogle Scholar
Taylor, G. I. 1921 Diffusion by continuous movements. Proc. Lond. Math. Soc. Ser. 2 20, 196211.Google Scholar
Toschi, F., Biferale, L., Boffetta, G., Celani, A., Devenish, B. J. & Lanotte, A. 2005. Acceleration and vortex filaments in turbulence. J. Turbulence 6 (15), 110.CrossRefGoogle Scholar
Vedula, P., Yeung, P. K. & Fox, R. O. 2001 Dynamics of scalar dissipation in isotropic turbulence: a numerical and modelling study. J. Fluid Mech. 433, 2960.CrossRefGoogle Scholar
Voth, G. A., Satyanarayan, K. & Bodenschatz, E. 1998 Lagrangian acceleration measurements at large Reynolds number. Phys. Fluids 10, 22682280.CrossRefGoogle Scholar
Voth, G. A., LaPorta, A., Crawford, A. M., Alexander, J. & Bodenschatz, E. 2002 Measurement of particle accelerations in fully developed turbulence. J. Fluid Mech. 469, 121160.CrossRefGoogle Scholar
Xu, H. T., Ouellette, N., Bourgoin, M. & Bodenschatz, E. 2006 Lagrangian velocity structure functions in high Reynolds number turbulence. Phys. Rev. Lett. 96, 024503.CrossRefGoogle Scholar
Yakhot, V. & Sreenivasan, K. R. 2005 Anomalous scaling of structure functions and dynamic constraints in turbulence simulations. J. Stat. Phys. 121, 823841.CrossRefGoogle Scholar
Yeung, P. K. 1997 One- and two-particle Lagrangian acceleration correlations in numerically simulated homogeneous turbulence. Phys. Fluids 9, 29812990.CrossRefGoogle Scholar
Yeung, P. K. 2001 Lagrangian characteristics of turbulence and scalar transport in direct numerical simulations. J. Fluid Mech. 427, 241274.CrossRefGoogle Scholar
Yeung, P. K. 2002 Lagrangian investigations of turbulence. Annu. Rev. Fluid Mech. 34, 115142.CrossRefGoogle Scholar
Yeung, P. K. & Pope, S. B. 1988 An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence. J. Comput. Phys. 79, 373416.CrossRefGoogle Scholar
Yeung, P. K. & Pope, S. B. 1989 Lagrangian statistics from direct numerical simulations of isotropic turbulence. J. Fluid Mech. 207, 531586.CrossRefGoogle Scholar
Yeung, P. K. & Zhou, Y. 1997 On the universality of the Kolmogorov constant in numerical simulations of turbulence. Phys. Rev. E 56, 17461752.Google Scholar
Yeung, P. K., Donzis, D. A. & Sreenivasan, K. R. 2005 High Reynolds number simulation of turbulent mixing. Phys. Fluids 17, 081703.CrossRefGoogle Scholar
Yeung, P. K., Pope, S. B., Lamorgese, A. G. & Donzis, D. A. 2006 a Acceleration and dissipation statistics of numerically simulations of isotropic turbulence. Phys. Fluids 18, 065103.CrossRefGoogle Scholar
Yeung, P. K., Pope, S. B. & Sawford, B. L. 2006 b Reynolds number dependence of Lagrangian statistics in large numerical simulations of isotropic turbulence. J. Turbulence 7 (58), 112.CrossRefGoogle Scholar
Zhou, T. & Antonia, R. A. 2000 Reynolds number dependence of the small-scale structure of grid turbulence. J. Fluid Mech. 406, 81107.CrossRefGoogle Scholar