Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-02-11T20:07:48.779Z Has data issue: false hasContentIssue false

Large-eddy simulation and parameterization of buoyant plume dynamics in stratified flow

Published online by Cambridge University Press:  07 April 2016

Di Yang*
Affiliation:
Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA
Bicheng Chen
Affiliation:
Department of Meteorology, Pennsylvania State University, University Park, PA 16802, USA
Scott A. Socolofsky
Affiliation:
Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843, USA
Marcelo Chamecki
Affiliation:
Department of Meteorology, Pennsylvania State University, University Park, PA 16802, USA
Charles Meneveau
Affiliation:
Department of Mechanical Engineering and Center for Environmental and Applied Fluid Mechanics, Johns Hopkins University, Baltimore, MD 21218, USA
*
Email address for correspondence: diyang@uh.edu

Abstract

Characteristics of laboratory-scale bubble-driven buoyant plumes in a stably stratified quiescent fluid are studied using large-eddy simulation (LES). As a bubble plume entrains stratified ambient water, its net buoyancy decreases due to the increasing density difference between the entrained and ambient fluids. A large fraction of the entrained fluid eventually detrains and falls along an annular outer plume from a height of maximum rise (peel height) to a neutral buoyancy level (trap height), during which less buoyant scalars (e.g. small droplets) are trapped and dispersed horizontally, forming quasi-horizontal intrusion layers. The inner/outer double-plume structure and the peel/intrusion process are found to be more distinct for cases with small bubble rise velocity, while weak and unstable when the slip velocity is large. LES results are averaged to generate distributions of mean velocity and turbulent fluxes. These distributions provide data for assessing the performance of previously developed closures used in one-dimensional integral plume models. In particular, the various LES cases considered in this study yield consistent behaviour for the entrainment coefficients for various plume cases. Furthermore, a new continuous peeling model is derived based on the insights obtained from LES results. Comparing to previous peeling models, the new model behaves in a more self-consistent manner, and it is expected to provide more reliable performance when applied in integral plume models.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albertson, J. D. & Parlange, M. B. 1999 Surface length scales and shear stress: implications for land–atmosphere interaction over complex terrain. Water Resour. Res. 35, 21212132.Google Scholar
Antonopoulos-Domis, M. 1981 Large-eddy simulation of a passive scalar in isotropic turbulence. J. Fluid Mech. 104, 5579.Google Scholar
Asaeda, T. & Imberger, J. 1993 Structure of bubble plumes in linearly stratified environments. J. Fluid Mech. 249, 3557.Google Scholar
Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.CrossRefGoogle Scholar
Becker, S., Sokolichin, A. & Eigenberger, G. 1994 Gas–liquid flow in bubble columns and loop reactors. Part II. Comparison of detailed experiments and flow simulations. Chem. Engng Sci. 49, 57475762.Google Scholar
Bou-Zeid, E., Meneveau, C. & Parlange, M. B. 2005 A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys. Fluids 17, 025105.Google Scholar
Buscaglia, G. C., Bombardelli, F. A. & García, M. H. 2002 Numerical modeling of large-scale bubble plumes accounting for mass transfer effects. Intl J. Multiphase Flow 28, 17631785.CrossRefGoogle Scholar
Calaf, M., Meneveau, C. & Meyers, J. 2010 Large eddy simulation study of fully developed wind-turbine array boundary layers. Phys. Fluids 22, 015110.Google Scholar
Calzavarini, E., Volk, R., Bourgoin, M., Lévêque, E., Pinton, J.-F. & Toschi, F. 2009 Acceleration statistics of finite-sized particles in turbulent flow: the role of Faxén forces. J. Fluid Mech. 630, 179189.Google Scholar
Camilli, R., Reddy, C. M., Yoerger, D. R., Van Mooy, B. A. S., Jakuba, M. V., Kinsey, J. C., Mclntyre, C. P., Sylva, S. P. & Maloney, J. V. 2010 Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science 330, 201204.CrossRefGoogle ScholarPubMed
Carazzo, G., Kaminski, E. & Tait, S. 2006 The route to self-similarity in turbulent jets and plumes. J. Fluid Mech. 547, 137148.CrossRefGoogle Scholar
Carazzo, G., Kaminski, E. & Tait, S. 2008 On the rise of turbulent plumes: quantitative effects of variable entrainment for submarine hydrothermal vents, terrestrial and extra terrestrial explosive volcanism. J. Geophys. Res. 113, B09201.Google Scholar
Chamecki, M. & Meneveau, C. 2011 Particle boundary layer above and downstream of an area source: scaling, simulations, and pollen transport. J. Fluid Mech. 683, 126.CrossRefGoogle Scholar
Chamecki, M., Meneveau, C. & Parlange, M. B. 2008 A hybrid spectral/finite-volume algorithm for large-eddy simulation of scalars in the atmospheric boundary layer. Boundary-Layer Meteorol. 128 (3), 473484.Google Scholar
Chamecki, M., Meneveau, C. & Parlange, M. B. 2009 Large eddy simulation of pollen transport in the atmospheric boundary layer. J. Aero. Sci. 40, 241255.Google Scholar
Chan, G. K. Y., Chow, A. C. & Adams, E. E. 2015 Effects of droplet size on intrusions of sub-surface oil spills. Environ. Fluid Mech. 15, 959973.Google Scholar
Crounse, B. C.2000 Modeling buoyant droplet plumes in a stratified environment. Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA.Google Scholar
Crounse, B. C., Wannamaker, E. J. & Adams, E. E. 2007 Integral model of a multiphase plume in quiescent stratification. J. Hydraul. Engng 133, 7076.Google Scholar
Davidson, G. A. 1986 Gaussian versus top-hat profile assumptions in integral plume models. Atmos. Environ. 20, 471478.Google Scholar
Deen, N. G., Solberg, T. & Hjertager, B. H. 2001 Large eddy simulation of the gas–liquid flow in a square cross-sectioned bubble column. Chem. Engng Sci. 56, 63416349.Google Scholar
Dhotre, M. T., Deen, N. G., Niceno, B., Khan, Z. & Joshi, J. B. 2013 Large eddy simulation for dispersed bubbly flows: a review. Intl J. Chem. Engng 2013, 343276.Google Scholar
Fabregat, A., Dewar, W. K., Özgökmen, T. M., Poje, A. C. & Wienders, N. 2015 Numerical simulations of turbulent thermal, bubble and hybrid plumes. Ocean Model. 90, 1628.CrossRefGoogle Scholar
Faxén, H. 1922 Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen ebenen Wänden eingeschlossen ist. Ann. Phys. 373, 89119.Google Scholar
Ferry, J. & Balachandar, S. 2001 A fast Eulerian method for disperse two-phase flow. Intl J. Multiphase Flow 27, 11991226.Google Scholar
Ferziger, J. H. & Perić, M. 2002 Computational Methods for Fluid Dynamics, 3rd edn. Springer.CrossRefGoogle Scholar
Fischer, H. B., List, E. J., Koh, R. C. Y., Imberger, J. & Brooks, N. H. 1979 Mixing in Inland and Coastal Waters. Academic.Google Scholar
Gaskell, P. H. & Lau, A. K. C. 1988 Curvature-compensated convective transport: SMART, a new boundedness-preservin transport algorithm. Intl J. Numer. Meth. Fluids 8 (6), 617641.Google Scholar
Hunt, G. R., Cooper, P. & Linden, P. F. 2001 Thermal stratification produced by plumes and jets in enclosed spaces. Build. Environ. 36, 871882.Google Scholar
Johansen, Ø., Rye, H. & Cooper, C. 2003 Simulation of buoyancy driven bubbly flow: established simplifications and open questions. Spill Sci. Technol. Bull. 50, 433443.Google Scholar
Kukulka, T., Plueddemann, A. J., Trowbridge, J. H. & Sullivan, P. P. 2010 Rapid mixed layer deepening by the combination of Langmuir and shear instabilities: a case study. J. Phys. Oceanogr. 40, 23812400.Google Scholar
Kumar, V., Kleissl, J., Meneveau, C. & Parlange, M. B. 2006 Large-eddy simulation of a diurnal cycle of the atmospheric boundary layer: atmospheric stability and scaling issues. Water Resour. Res. 42, W06D09.Google Scholar
Legendre, D., Zenit, R. & Velez-Cordero, J. R. 2012 On the deformation of gas bubbles in liquids. Phys. Fluids 24, 043303.CrossRefGoogle Scholar
Leitch, A. M. & Daines, W. D. 1989 Liquid volume flux in a weak bubble plume. J. Fluid Mech. 205, 7798.Google Scholar
Lemckert, C. J. & Imberger, J. 1993 Energetic bubble plumes in arbitrary stratification. J. Hydraul. Engng 119 (6), 680703.Google Scholar
Lilly, D. K. 1967 The representation of small-scale turbulence in numerical simulation experiments. In Proceedings of the IBM Scientific Computing Symposium on Environmental Science, pp. 195210.Google Scholar
Liro, C. R., Adams, E. E. & Herzog, H. J. 1992 Mean flow in round bubble plumes. Energy Convers. Manage. 33, 667674.Google Scholar
List, E. J. 1982 Mechanics of turbulent buoyant jets and plumes. In Turbulent Buoyant Jets and Plumes (ed. Rodi, W.), pp. 168. Pergamon.Google Scholar
Mason, P. J. 1989 Large-eddy simulation of the convective atmospheric boundary layer. J. Atmos. Sci. 46, 14921516.Google Scholar
McDougall, T. J. 1978 Bubble plumes in stratified environments. J. Fluid Mech. 85, 655672.Google Scholar
Mcwilliams, J. C., Sullivan, P. P. & Moeng, C.-H. 1997 Langmuir turbulence in the ocean. J. Fluid Mech. 334, 130.Google Scholar
Milgram, J. H. 1983 Mean flow in round bubble plumes. J. Fluid Mech. 133, 345376.Google Scholar
Moeng, C.-H. 1984 A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci. 41 (13), 20522062.Google Scholar
Morton, B. R. 1962 Coaxial turbulent jets. Intl J. Heat Mass Transfer 5, 955965.CrossRefGoogle Scholar
Morton, B. R., Taylor, G. I. & Turner, J. S. 1956 Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. A 234, 123.Google Scholar
Niceno, B., Dhotre, M. T. & Deen, N. G. 2008 One-equation sub-grid scale (SGS) modelling for Euler–Euler large eddy simulation (EELES) of dispersed bubbly flow. Chem. Engng Sci. 63, 39233931.Google Scholar
Orszag, S. A. & Pao, Y.-H. 1974 Numerical computation of turbulent shear flow. Adv. Geophys. 18A, 224236.Google Scholar
Pan, Y., Chamecki, M. & Isard, S. A. 2014 Large-eddy simulation of turbulence and particle dispersion inside the canopy roughness sublayer. J. Fluid Mech. 753, 499534.Google Scholar
Papanicolaou, P. N. & List, E. J. 1988 Investigations of round vertical turbulent buoyant jets. J. Fluid Mech. 195, 341391.CrossRefGoogle Scholar
Pfleger, D. & Becker, S. 2001 Modelling and simulation of the dynamic flow behavior in a bubble column. Chem. Engng Sci. 56, 17371747.Google Scholar
Polton, J. A., Smith, J. A., Mackinnon, J. A. & Tejada-Martinez, A. E. 2008 Rapid generation of high-frequency internal waves beneath a wind and wave forced oceanic surface mixed layer. Geophys. Res. Lett. 35, L13602.Google Scholar
Priestley, C. H. B. & Ball, F. K. 1955 Continuous convection from an isolated source of heat. Q. J. R. Meteorol. Soc. 81, 144157.Google Scholar
Reingold, L. S.1994 An experimental comparison of bubble and sediment plumes in stratified environments. Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA.Google Scholar
Richards, T. S., Aubourg, Q. & Sutherland, B. R. 2014 Radial intrusions from turbulent plumes in uniform stratification. Phys. Fluids 26, 036602.Google Scholar
Schladow, S. G. 1992 Bubble plume dynamics in a stratified medium and the implications for water quality amelioration in lakes. Water Resour. Res. 28, 313321.Google Scholar
Schladow, S. G. 1993 Lake destratification by bubble-plume systems: design methodology. J. Hydraul. Engng 119, 350368.Google Scholar
Seol, D.-G., Bhaumik, T., Bergmann, C. & Socolofsky, S. A. 2007 Particle image velocimetry measurements of the mean flow characteristics in a bubble plume. J. Engng Mech. 133 (6), 665676.Google Scholar
Seol, D.-G., Bryant, D. B. & Socolofsky, S. A. 2009 Measurement of behavioral properties of entrained ambient water in a stratified bubble plume. J. Hydraul. Engng 135 (11), 983988.Google Scholar
Shotorban, B. & Balachandar, S. 2007 A Eulerian model for large-eddy simulation of concentration of particles with small Stokes numbers. Phys. Fluids 19, 118107.Google Scholar
Smagorinsky, J. 1963 General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weath. Rev. 91 (3), 99164.Google Scholar
Socolofsky, S. A.2001 Laboratory experiments of multi-phase plumes in stratification and crossflow. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA.Google Scholar
Socolofsky, S. A. & Adams, E. E. 2003 Liquid volume fluxes in stratified multiphase plumes. J. Hydraul. Engng 129, 905914.Google Scholar
Socolofsky, S. A. & Adams, E. E. 2005 Role of slip velocity in the behavior of stratified multiphase plumes. J. Hydraul. Engng 131 (4), 273282.Google Scholar
Socolofsky, S. A., Adams, E. E. & Sherwood, C. R. 2011 Formation dynamics of subsurface hydrocarbon intrusions following the Deepwater Horizon blowout. Geophys. Res. Lett. 38, L09602.Google Scholar
Socolofsky, S. A., Bhaumik, T. & Seol, D.-G. 2008 Double-plume integral models for near-field mixing in multiphase plumes. J. Hydraul. Engng 134 (6), 772783.Google Scholar
Socolofsky, S. A., Crounse, B. C. & Adams, E. E. 2002 Multi-phase plumes in uniform, stratified and flowing environments. In Environmental Fluid Mechanics – Theories and Applications (ed. Shen, H., Cheng, A., Wang, K.-H. & Teng, M. H.), chap. 4, pp. 84125. ASCE/Fluids Committee.Google Scholar
Sokolichin, A. & Eigenberger, G. 1994 Gas–liquid flow in bubble columns and loop reactors. Part I. Detailed modeling and numerical simulation. Chem. Engng Sci. 49, 57355746.CrossRefGoogle Scholar
Sokolichin, A., Eigenberger, G. & Lapin, A. 2004 Simulation of buoyancy driven bubbly flow: established simplifications and open questions. AIChE J. 50, 2445.Google Scholar
Sullivan, P. P., Mcwilliams, J. C. & Moeng, C.-H. 1994 A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Boundary-Layer Meteorol. 71, 247276.Google Scholar
Tabib, M. V., Roy, S. A. & Joshi, J. B. 2008 Cfd simulation of bubble column – an analysis of interphase forces and turbulence models. Chem. Engng Sci. 139, 589614.CrossRefGoogle Scholar
Teixeira, M. A. C. & Miranda, P. M. A. 1997 On the entrainment assumption in Schatzmann’s integral plume model. Q. J. R. Meteorol. Soc. 57, 1542.Google Scholar
Tseng, Y.-H., Meneveau, C. & Parlange, M. B. 2006 Modeling flow around bluff bodies and urban dispersion using large eddy simulation. Environ. Sci. Technol. 40, 26532662.Google Scholar
Turner, J. S. 1986 Turbulent entrainment: the development of the entrainment assumption, and its application to geophysical flows. J. Fluid Mech. 173, 431471.Google Scholar
Wang, H. & Law, A. W.-K. 2002 Second-order integral model for a round turbulent buoyant jet. J. Fluid Mech. 459, 397428.Google Scholar
Weber, T. C., Robertis, A. D., Greenaway, S. F., Smith, S., Mayer, L. & Rice, G. 2012 Estimating oil concentration and flow rate with calibrated vessel-mounted acoustic echo sounders. Proc. Natl Acad. Sci. USA 109, 2024020245.Google Scholar
Wüest, A., Brooks, N. H. & Imboden, D. M. 1992 Bubble plume model for lake restoration. Water Resour. Res. 28, 32353250.Google Scholar
Yang, D., Chamecki, M. & Meneveau, C. 2014a Inhibition of oil plume dilution in Langmuir ocean circulation. Geophys. Res. Lett. 41, 16321638.Google Scholar
Yang, D., Chen, B., Chamecki, M. & Meneveau, C. 2015 Oil plumes and dispersion in Langmuir, upper-ocean turbulence: large-eddy simulations and K-profile parameterization. J. Geophys. Res. Oceans 120, 47294759.Google Scholar
Yang, D., Meneveau, C. & Shen, L. 2014b Effect of downwind swells on offshore wind energy harvesting – a large-eddy simulation study. Renew. Energy 70, 1123.CrossRefGoogle Scholar
Yang, D., Meneveau, C. & Shen, L. 2014c Large-eddy simulation of offshore wind farm. Phys. Fluids 26, 025101.Google Scholar
Zhang, D., Deen, N. G. & Kuipers, J. A. M. 2006 Numerical simulation of the dynamic flow behavior in a bubble column: a study of closures for turbulence and interface forces. Chem. Engng Sci. 61, 75937608.Google Scholar
Zheng, L. & Yapa, P. D. 2000 Buoyant velocity of spherical and nonspherical bubbles/droplets. J. Hydraul. Engng 126, 852854.Google Scholar