Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-12T23:54:36.617Z Has data issue: false hasContentIssue false

Large-eddy simulation on the similarity between wakes of wind turbines with different yaw angles

Published online by Cambridge University Press:  28 June 2021

Zhaobin Li
Affiliation:
The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing100190, PR China School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing100049, PR China
Xiaolei Yang*
Affiliation:
The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing100190, PR China School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing100049, PR China
*
Email address for correspondence: xyang@imech.ac.cn

Abstract

This work is dedicated to studying the similarity between wakes of wind turbines with different yaw angles and tip speed ratios under different turbulent inflows using large-eddy simulations with actuator surface models. Simulation results show that wake characteristics from cases with different yaw angles overlap with each other when normalized properly, which include the streamwise variations of the wake deflection, the centreline velocity deficit, the widths of the wakes, the standard deviations of instantaneous wake centre positions and the instantaneous wake widths. Different scalings are proposed for the streamwise velocity deficit and the transverse velocity. The similarities observed between cases with different yaw angles and the different scalings suggest that it is proper to decompose the wake of a yawed wind turbine into a streamwise wake and a lateral wake deflection, which is critical for developing analytical models. The mean of the instantaneous wake widths and the mean of the instantaneous centreline streamwise velocity are observed as being smaller than those of the time-averaged wake. These quantities are then related by using two analytical expressions proposed in this work. The observed similarities together with the proposed analytical expressions provide a better understanding of wakes of yawed wind turbines and can be employed to develop physics-based dynamic wake models.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abkar, M. & Porté-Agel, F. 2015 Influence of atmospheric stability on wind-turbine wakes: a large-eddy simulation study. Phys. Fluids 27 (3), 035104.CrossRefGoogle Scholar
Ainslie, J.F. 1988 Calculating the flowfield in the wake of wind turbines. J. Wind Engng Ind. Aerodyn. 27 (1–3), 213224.CrossRefGoogle Scholar
Annoni, J., Gebraad, P.M.O., Scholbrock, A.K., Fleming, P.A. & van Wingerden, J.-W. 2016 Analysis of axial-induction-based wind plant control using an engineering and a high-order wind plant model. Wind Energy 19 (6), 11351150.CrossRefGoogle Scholar
Barthelmie, R.J., et al. 2009 Modelling and measuring flow and wind turbine wakes in large wind farms offshore. Wind Energy 12 (5), 431444.CrossRefGoogle Scholar
Bartl, J., Mühle, F., Schottler, J., Sætran, L., Peinke, J., Adaramola, M. & Hölling, M. 2018 Wind tunnel experiments on wind turbine wakes in yaw: effects of inflow turbulence and shear. Wind Energy Sci. 3 (1), 329343.CrossRefGoogle Scholar
Bastankhah, M. & Porté-Agel, F. 2014 A new analytical model for wind-turbine wakes. Renewable Energy 70, 116123.CrossRefGoogle Scholar
Bastankhah, M. & Porté-Agel, F. 2016 Experimental and theoretical study of wind turbine wakes in yawed conditions. J. Fluid Mech. 806, 506541.CrossRefGoogle Scholar
Bastankhah, M. & Porté-Agel, F. 2017 Wind tunnel study of the wind turbine interaction with a boundary-layer flow: upwind region, turbine performance, and wake region. Phys. Fluids 29 (6), 65105.CrossRefGoogle Scholar
Bastankhah, M. & Porté-Agel, F. 2019 Wind farm power optimization via yaw angle control : a wind tunnel study. J. Renew. Sustain. Energy 11 (2), 23301.CrossRefGoogle Scholar
Blocken, B., Stathopoulos, T. & Carmeliet, J. 2007 CFD simulation of the atmospheric boundary layer: wall function problems. Atmos. Environ. 41 (2), 238252.CrossRefGoogle Scholar
Brunton, S.L., Noack, B.R. & Koumoutsakos, P. 2020 Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. 52, 477508.CrossRefGoogle Scholar
Burton, T., Jenkins, N., Sharpe, D. & Bossanyi, E. 2011 Wind Energy Handbook. John Wiley & Sons.CrossRefGoogle Scholar
Calvert, J.R. 1967 Experiments on the flow past an inclined disk. J. Fluid Mech. 29 (4), 691703.CrossRefGoogle Scholar
Chamorro, L.P., Lee, S.-J., Olsen, D., Milliren, C., Marr, J., Arndt, R.E.A. & Sotiropoulos, F. 2015 Turbulence effects on a full-scale 2.5 MW horizontal-axis wind turbine under neutrally stratified conditions. Wind Energy 18 (2), 339349.CrossRefGoogle Scholar
Chattot, J. 2014 Actuator disk theory-steady and unsteady models. Trans. ASME: J. Solar Energy Engng 136 (3), 031012.Google Scholar
Cramer, D. 2002 Basic Statistics for Social Research: Step-by-Step Calculations & Computer Techniques using Minitab. Routledge.CrossRefGoogle Scholar
Crespo, A. & Herna, J. 1996 Turbulence characteristics in wind-turbine wakes. J. Wind Engng Ind. Aerodyn. 61 (1), 7185.CrossRefGoogle Scholar
Du, Z. & Selig, M. 1998 A 3-D stall-delay model for horizontal axis wind turbine performance prediction. In 1998 ASME Wind Energy Symposium, 1998-21, AIAA.CrossRefGoogle Scholar
Duraisamy, K., Iaccarino, G. & Xiao, H. 2019 Turbulence modeling in the age of data. Annu. Rev. Fluid Mech. 51, 357377.CrossRefGoogle Scholar
Fleming, P.A., Gebraad, P.M.O., Lee, S., van Wingerden, J.W., Johnson, K., Churchfield, M., Michalakes, J., Spalart, P. & Moriarty, P. 2014 Evaluating techniques for redirecting turbine wakes using SOWFA. Renew. Energy 70, 211218.CrossRefGoogle Scholar
Foti, D., Yang, X., Shen, L. & Sotiropoulos, F. 2019 Effect of wind turbine nacelle on turbine wake dynamics in large wind farms. J. Fluid Mech. 869, 126.CrossRefGoogle Scholar
Foti, D., Yang, X. & Sotiropoulos, F. 2018 Similarity of wake meandering for different wind turbine designs for different scales. J. Fluid Mech. 842, 525.CrossRefGoogle Scholar
Fuertes, F., Markfort, C. & Porté-Agel, F. 2018 Wind turbine wake characterization with nacelle-mounted wind Lidars for analytical wake model validation. Remote Sens. 10 (5), 668.CrossRefGoogle Scholar
Gao, S., Tao, L., Tian, X. & Yang, J. 2018 Flow around an inclined circular disk. J. Fluid Mech. 851, 687714.CrossRefGoogle Scholar
Ge, L. & Sotiropoulos, F. 2007 A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. J. Comput. Phys. 225 (2), 17821809.CrossRefGoogle ScholarPubMed
Gebraad, P., Thomas, J.J., Ning, A., Fleming, P. & Dykes, K. 2017 Maximization of the annual energy production of wind power plants by optimization of layout and yaw-based wake control. Wind Energy 20 (1), 97107.CrossRefGoogle Scholar
Germano, M., Piomelli, U., Moin, P. & Cabot, W.H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3 (7), 17601765.CrossRefGoogle Scholar
Glauert, H. 1926 A general theory of the autogyro. Tech. Rep. HM Stationery Office.Google Scholar
He, G., Jin, G. & Yang, Y. 2017 Space-time correlations and dynamic coupling in turbulent flows. Annu. Rev. Fluid Mech. 49, 5170.CrossRefGoogle Scholar
Heisel, M., Hong, J. & Guala, M. 2018 The spectral signature of wind turbine wake meandering: a wind tunnel and field-scale study. Wind Energy 21 (9), 715731.CrossRefGoogle Scholar
Högström, U., Asimakopoulos, D.N., Kambezidis, H., Helmis, C.G. & Smedman, A. 1988 A field study of the wake behind a 2 MW wind turbine. Atmos. Environ. 22 (4), 803820.CrossRefGoogle Scholar
Hong, J., Toloui, M., Chamorro, L.P., Guala, M., Howard, K., Riley, S., Tucker, J. & Sotiropoulos, F. 2014 Natural snowfall reveals large-scale flow structures in the wake of a 2.5-MW wind turbine. Nat. Commun. 5, 4216.CrossRefGoogle ScholarPubMed
Howland, M.F., Bossuyt, J., Martínez-Tossas, L.A., Meyers, J. & Meneveau, C. 2016 Wake structure in actuator disk models of wind turbines in yaw under uniform inflow conditions. J. Renew. Sustain. Energy 8 (4), 043301.CrossRefGoogle Scholar
Howland, M.F., et al. 2020 Influence of atmospheric conditions on the power production of utility-scale wind turbines in yaw misalignment. J. Renew. Sustain. Energy 12, 063307.CrossRefGoogle Scholar
Hoyt, J. & Seiler, P. 2020 Wind farm wake-steering exploration during grid curtailment. In 2020 American Control Conference (ACC), pp. 4052–4057. IEEE.CrossRefGoogle Scholar
Jiménez, Á., Crespo, A. & Migoya, E. 2010 Application of a LES technique to characterize the wake deflection of a wind turbine in yaw. Wind Energy 13 (6), 559572.CrossRefGoogle Scholar
Knoll, D.A. & Keyes, D.E. 2004 Jacobian-free Newton–Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193 (2), 357397.CrossRefGoogle Scholar
Krogstad, P.-Å. & Adaramola, M.S. 2012 Performance and near wake measurements of a model horizontal axis wind turbine. Wind Energy 15 (5), 743756.CrossRefGoogle Scholar
Larsen, G.C., et al. 2007 Dynamic wake meandering modeling. Risø National Laboratory.Google Scholar
Larsen, G.C., Madsen, H.A., Thomsen, K. & Larsen, T.J. 2008 Wake meandering: a pragmatic approach. Wind Energy 11 (4), 377395.CrossRefGoogle Scholar
Liew, J.Y., Urbán, A.M. & Andersen, S.J. 2020 Analytical model for the power–yaw sensitivity of wind turbines operating in full wake. Wind Energy Sci. 5 (1), 427437.CrossRefGoogle Scholar
Liu, H., Wang, G. & Zheng, X. 2019 Three-dimensional representation of large-scale structures based on observations in atmospheric surface layers. J. Geophys. Res. 124 (20), 1075310771.CrossRefGoogle Scholar
Lovric, M. 2011 International Encyclopedia of Statistical Science. Springer.CrossRefGoogle Scholar
Méchali, M., Barthelmie, R., Frandsen, S., Jensen, L. & Réthoré, P.-E. 2006 Wake effects at Horns Rev and their influence on energy production. In European Wind Energy Conference and Exhibition, vol. 1, pp. 10–20. Citeseer.Google Scholar
Medici, D. & Alfredsson, P.H. 2006 Measurements on a wind turbine wake: 3D effects and bluff body vortex shedding. Wind Energy 9 (3), 219236.CrossRefGoogle Scholar
Meneveau, C. 2019 Big wind power: seven questions for turbulence research. J. Turbul. 20 (1), 220.CrossRefGoogle Scholar
Munters, W. & Meyers, J. 2018 Dynamic strategies for yaw and induction control of wind farms based on large-eddy simulation and optimization. Energies 11 (1), 177.CrossRefGoogle Scholar
Niayifar, A. & Porté-Agel, F. 2016 Analytical modeling of wind farms: a new approach for power prediction. Energies 9 (9), 741.CrossRefGoogle Scholar
Ossmann, D., Theis, J. & Seiler, P. 2017 Load reduction on a Clipper Liberty wind turbine with linear parameter-varying individual blade pitch control. Wind Energy 20 (10), 17711786.CrossRefGoogle Scholar
Porté-Agel, F., Bastankhah, M. & Shamsoddin, S. 2020 Wind-turbine and wind-farm flows: a review. Boundary-Layer Meteorol. 174 (1), 159.CrossRefGoogle ScholarPubMed
Qian, G.-W. & Ishihara, T. 2018 A new analytical wake model for yawed wind turbines. Energies 11 (3), 665.CrossRefGoogle Scholar
Saad, Y. 1993 A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14 (2), 461469.CrossRefGoogle Scholar
Schottler, J., Bartl, J., Mühle, F., Sætran, L., Peinke, J. & Hölling, M. 2018 Wind tunnel experiments on wind turbine wakes in yaw: redefining the wake width. Wind Energy Sci. 3 (1), 257273.CrossRefGoogle Scholar
Shapiro, C.R., Gayme, D.F. & Meneveau, C. 2018 Modelling yawed wind turbine wakes: a lifting line approach. J. Fluid Mech. 841, R1.CrossRefGoogle Scholar
Shen, W.Z., Mikkelsen, R., Sørensen, J.N. & Bak, C. 2005 Tip loss corrections for wind turbine computations. Wind Energy 8 (4), 457475.CrossRefGoogle Scholar
Shen, W.Z., Zhang, J.H. & Sorensen, J.N. 2009 The actuator surface model: a new Navier–Stokes based model for rotor computations. Trans. ASME: J. Solar Energy Engng 131 (1), 011002.Google Scholar
Smagorinsky, J. 1963 General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weath. Rev. 91 (3), 99164.2.3.CO;2>CrossRefGoogle Scholar
Sorensen, J.N. & Shen, W.Z. 2002 Numerical modeling of wind turbine wakes. Trans. ASME: J. Fluids Engng 124 (2), 393399.Google Scholar
Stevens, R.J.A.M. & Meneveau, C. 2017 Flow structure and turbulence in wind farms. Annu. Rev. Fluid Mech. 49, 311339.CrossRefGoogle Scholar
Thomsen, K. & Sørensen, P. 1999 Fatigue loads for wind turbines operating in wakes. J. Wind Engng Ind. Aerodyn. 80 (1), 121136.CrossRefGoogle Scholar
Veers, P., Dykes, K., Lantz, E., Barth, S., Bottasso, C.L., Carlson, O., Clifton, A., Green, J., Green, P. & Holttinen, H. 2019 Grand challenges in the science of wind energy. Science 366 (6464), eaau2027.CrossRefGoogle ScholarPubMed
Wang, G. & Zheng, X. 2016 Very large scale motions in the atmospheric surface layer: a field investigation. J. Fluid Mech. 802, 464489.CrossRefGoogle Scholar
Wu, Y.-T. & Porté-Agel, F. 2012 Atmospheric turbulence effects on wind-turbine wakes: an LES study. Energies 5 (12), 53405362.CrossRefGoogle Scholar
Xie, S. & Archer, C. 2015 Self-similarity and turbulence characteristics of wind turbine wakes via large-eddy simulation. Wind Energy 18 (10), 18151838.CrossRefGoogle Scholar
Yang, X. 2020 Towards the development of a wake meandering model based on neural networks. In Journal of Physics: Conference Series, vol. 1618, p. 062026. IOP Publishing.CrossRefGoogle Scholar
Yang, X., Howard, K.B., Guala, M. & Sotiropoulos, F. 2015 a Effects of a three-dimensional hill on the wake characteristics of a model wind turbine. Phys. Fluids 27 (2), 025103.CrossRefGoogle Scholar
Yang, X., Milliren, C., Kistner, M., Hogg, C., Marr, J., Shen, L. & Sotiropoulos, F. 2021 High-fidelity simulations and field measurements for characterizing wind fields in a utility-scale wind farm. Appl. Energy 281, 116115.CrossRefGoogle Scholar
Yang, X., Pakula, M. & Sotiropoulos, F. 2018 Large-eddy simulation of a utility-scale wind farm in complex terrain. Appl. Energy 229, 767777.CrossRefGoogle Scholar
Yang, X. & Sotiropoulos, F. 2018 A new class of actuator surface models for wind turbines. Wind Energy 21 (5), 285302.CrossRefGoogle Scholar
Yang, X. & Sotiropoulos, F. 2019 a A review on the meandering of wind turbine wakes. Energies 12 (24), 4725.CrossRefGoogle Scholar
Yang, X. & Sotiropoulos, F. 2019 b Wake characteristics of a utility-scale wind turbine under coherent inflow structures and different operating conditions. Phys. Rev. Fluids 4 (2), 024604.CrossRefGoogle Scholar
Yang, X., Sotiropoulos, F., Conzemius, R.J., Wachtler, J.N. & Strong, M.B. 2015 b Large-eddy simulation of turbulent flow past wind turbines/farms: the virtual wind simulator (VWiS). Wind Energy 18 (12), 20252045.CrossRefGoogle Scholar
Yang, X., Zhang, X., Li, Z. & He, G.-W. 2009 A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations. J. Comput. Phys. 228 (20), 78217836.CrossRefGoogle Scholar
Zhang, W., Markfort, C.D. & Porté-Agel, F. 2013 Wind-turbine wakes in a convective boundary layer: a wind-tunnel study. Boundary-Layer Meteorol. 146, 19.CrossRefGoogle Scholar