Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T04:28:32.536Z Has data issue: false hasContentIssue false

Large-eddy simulations of the noise control of supersonic rectangular jets with bevelled nozzles

Published online by Cambridge University Press:  24 January 2025

Bao Chen
Affiliation:
School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, PR China
Yitong Fan
Affiliation:
School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, PR China Department of Mechanical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
Zifei Yin
Affiliation:
School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, PR China
Gaohua Li
Affiliation:
School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, PR China
Weipeng Li*
Affiliation:
School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, PR China
*
Email address for correspondence: liweipeng@sjtu.edu.cn

Abstract

The bevelled nozzle is a promising noise control approach and has been tested to suppress the noise levels in supersonic circular jets, but not in rectangular jets so far. In this study, implicit large-eddy simulations are performed to analyse the noise control of supersonic rectangular jets with single- and double-bevelled nozzles. Three nozzle pressure ratios ($NPR = 2.3$, 3.0 and 5.0) are considered to form two over-expanded cold jets and one under-expanded cold jet, exhausted from a baseline convergent–divergent rectangular nozzle with an aspect ratio of 2.0. Results show that, with the increase of $NPR$, the oscillation of the jet plume is switched from a symmetrical mode to a flapping mode (preferential in the minor-axis plane), then to a helical mode, together with a reduction of the screech frequency. The amplitude of the screech tone is the strongest in the flapping jet, and the turbulent mixing noise is the most prominent in the helically oscillating jet. The single-bevelled nozzle induces asymmetric shock-cell structures and deflects the jet plumes, and the double-bevelled nozzle primarily enables the enhancement of the shear-layer mixing and shortens the lengths of the jet potential cores. With the bevelled nozzles, the gross thrusts of the baseline nozzle are increased by $0.05 \sim 7.38$ %. Details on the characteristics of far-field noise in the jets with/without the bevel cuts and their noise control mechanisms are discussed using the Ffowcs Williams–Hawkings acoustic analogy, dynamic mode decomposition and spatio-temporal Fourier transformation. Results suggest that the noise control has a close relationship with the destruction of well-organized coherent structures and the suppression of upstream-propagating guided-jet modes, which interrupt the feedback mechanism accounting for the generation of screech tones in the supersonic rectangular jets.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aikens, K.M., Blaisdell, G.A. & Lyrintzis, A.S. 2015 Analysis of converging-diverging beveled nozzle jets using large eddy simulation with a wall model. AIAA Paper 2015–0509.CrossRefGoogle Scholar
Anureka, R. & Srinivasan, K. 2018 The role of castellations on pipe jet noise. In Noise Control and Acoustics Division Conference, vol. 51425, p. V001T05A001. ASME.CrossRefGoogle Scholar
Arun Kumar, P. & Rathakrishnan, E. 2015 Corrugated right-angled triangular tabs for supersonic jet control. Proc. Inst. Mech. Engrs G J. Aerosp. Engng 229 (11), 20662084.CrossRefGoogle Scholar
Benot, A., Castelain, T. & Bailly, C. 2013 Effect of a tab on the aerodynamical development and noise of an underexpanded supersonic jet. C. R. Mec. 341 (9), 659666.Google Scholar
Bhide, K., Siddappaji, K. & Abdallah, S. 2021 Aspect ratio driven relationship between nozzle internal flow and supersonic jet mixing. Aerospace 8 (3), 116.CrossRefGoogle Scholar
Bridges, J.E. 2012 Acoustic measurements of rectangular nozzles with bevel. AIAA Paper 2012–2252.CrossRefGoogle Scholar
Bridges, J.E. & Wernet, M.P. 2015 Turbulence measurements of rectangular nozzles with bevel. AIAA Paper 2015–0228.CrossRefGoogle Scholar
Callender, B., Gutmark, E.J. & Martens, S. 2010 Flow field characterization of coaxial conical and serrated (chevron) nozzles. Exp. Fluids 48 (4), 637649.CrossRefGoogle Scholar
Chakrabarti, S., Gaitonde, D.V., Nair Unnikrishnan, S., Stack, C., Baier, F., Karnam, A. & Gutmark, E. 2022 Turbulent statistics of a hot, overexpanded rectangular jet. J. Propul. Power 38 (3), 421436.CrossRefGoogle Scholar
Chen, B., Qiang, X., Wu, F., Yang, M. & Li, W. 2024 Implicit large-eddy simulation of an over-expanded screeching rectangular jet. Chinese J. Aeronaut. 37 (11), 201–216.CrossRefGoogle Scholar
Chen, N. & Yu, H. 2014 Mechanism of axis switching in low aspect-ratio rectangular jets. Comput. Maths Applics. 67 (2), 437444.CrossRefGoogle Scholar
Chen, S., Gojon, R. & Mihaescu, M. 2021 Flow and aeroacoustic attributes of highly-heated transitional rectangular supersonic jets. Aerosp. Sci. Technol. 114 (12), 106747.CrossRefGoogle Scholar
Clarkson, B.L. 1962 The design of structures to resist jet noise fatigue. Aeronaut. J. 66 (622), 603616.CrossRefGoogle Scholar
Coderoni, M., Lyrintzis, A.S. & Blaisdell, G.A. 2019 Large-eddy simulations analysis of supersonic heated jets with fluid injection for noise reduction. AIAA J. 57 (8), 34423455.CrossRefGoogle Scholar
Cuppoletti, D.R. & Gutmark, E. 2014 Fluidic injection on a supersonic jet at various Mach numbers. AIAA J. 52 (2), 293306.CrossRefGoogle Scholar
Edgington-Mitchell, D. 2019 Aeroacoustic resonance and self-excitation in screeching and impinging supersonic jets – a review. Intl J. Aeroacoust. 18 (2–3), 118188.CrossRefGoogle Scholar
Edgington-Mitchell, D., Jaunet, V., Jordan, P., Towne, A., Soria, J. & Honnery, D. 2018 Upstream-travelling acoustic jet modes as a closure mechanism for screech. J. Fluid Mech. 855, R1.CrossRefGoogle Scholar
Edgington-Mitchell, D., Wang, T., Nogueira, P., Schmidt, O., Jaunet, V., Duke, D., Jordan, P. & Towne, A. 2021 a Waves in screeching jets. J. Fluid Mech. 913, A7.CrossRefGoogle Scholar
Edgington-Mitchell, D., Weightman, J., Lock, S., Kirby, R., Nair, V., Soria, J. & Honnery, D. 2021 b The generation of screech tones by shock leakage. J. Fluid Mech. 908, A46.CrossRefGoogle Scholar
Erwin, J.P., Panickar, P., Vogel, P. & Sinha, N. 2014 Acoustic source localization of rectangular jets using large eddy simulation with numerical phased arrays. AIAA Paper 2014–0179.CrossRefGoogle Scholar
Ffowcs Williams, J.E., Hawkings, D.L. & Lighthill, M.J. 1969 Sound generation by turbulence and surfaces in arbitrary motion. Phil. Trans. R. Soc. Lond. A 264 (1151), 321342.Google Scholar
Franquet, E., Perrier, V., Gibout, S. & Bruel, P. 2015 Free underexpanded jets in a quiescent medium: a review. Prog. Aerosp. Sci. 77, 2553.CrossRefGoogle Scholar
Gautam, K., Karnam, A., Mohammed, A., Saleem, M. & Gutmark, E. 2024 Internal fluidic injection for the control of supersonic rectangular jet noise. AIAA Paper 2024–2464.CrossRefGoogle Scholar
Gojon, R., Baier, F., Gutmark, E.J. & Mihaescu, M. 2017 Temperature effects on the aerodynamic and acoustic fields of a rectangular supersonic jet. AIAA Paper 2017–0002.CrossRefGoogle Scholar
Gojon, R. & Bogey, C. 2017 Numerical study of the flow and the near acoustic fields of an underexpanded round free jet generating two screech tones. Intl J. Aeroacoust. 16 (7–8), 603625.CrossRefGoogle Scholar
Gojon, R., Gutmark, E. & Mihaescu, M. 2019 Antisymmetric oscillation modes in rectangular screeching jets. AIAA J. 57 (8), 34223441.CrossRefGoogle Scholar
Goss, A., Lee, J. & Mclaughlin, D. 2009 Acoustic measurements of high-speed jets from rectangular nozzle with thrust vectoring. AIAA J. 47, 14821490.CrossRefGoogle Scholar
Greska, B., Krothapalli, A., Seiner, J., Jansen, B. & Ukeiley, L. 2005 The effects of microjet injection on an F404 jet engine. AIAA Paper 2005–3047.CrossRefGoogle Scholar
Grinstein, F.F. 1995 Self-induced vortex ring dynamics in subsonic rectangular jets. Phys. Fluids 7 (10), 25192521.CrossRefGoogle Scholar
Grinstein, F.F. 2001 Vortex dynamics and entrainment in rectangular free jets. J. Fluid Mech. 437, 69101.CrossRefGoogle Scholar
Grinstein, F.F., Margolin, L.G. & Rider, W.J. 2007 Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Heeb, N., Gutmark, E. & Kailasanath, K. 2016 Impact of chevron spacing and asymmetric distribution on supersonic jet acoustics and flow. J. Sound Vib. 370, 5481.CrossRefGoogle Scholar
Heeb, N., Kastner, J., Gutmark, E. & Kailasanath, K. 2013 Supersonic jet noise reduction by chevrons and fluidic injection. Intl J. Aeroacoust. 12 (7–8), 679697.CrossRefGoogle Scholar
Henderson, B. 2010 Fifty years of fluidic injection for jet noise reduction. Intl J. Aeroacoust. 9 (1–2), 91122.CrossRefGoogle Scholar
Henderson, B. & Bridges, J. 2010 An mdoe investigation of chevrons for supersonic jet noise reduction. AIAA Paper 2010–3926.CrossRefGoogle Scholar
Humphrey, N.J. & Edgington-Mitchell, D. 2016 The effect of low lobe count chevron nozzles on supersonic jet screech. Intl J. Aeroacoust. 15 (3), 294311.CrossRefGoogle Scholar
Ioannou, V. & Laizet, S. 2018 Numerical investigation of plasma-controlled turbulent jets for mixing enhancement. Intl J. Heat Fluid Flow 70, 193205.CrossRefGoogle Scholar
Jawahar, H.K., Meloni, S. & Camussi, R. 2022 Jet noise sources for chevron nozzles in under-expanded condition. Intl J. Aeroacoust. 1475472X221101766.CrossRefGoogle Scholar
Jumper, E.J. 1983 Wave drag prediction using a simplified supersonic area rule. J. Aircraft 20 (10), 893895.CrossRefGoogle Scholar
Karami, S. & Soria, J. 2021 Influence of nozzle external geometry on wavepackets in under-expanded supersonic impinging jets. J. Fluid Mech. 929, A20.CrossRefGoogle Scholar
Karami, S., Stegeman, P.C., Ooi, A., Theofilis, V. & Soria, J. 2020 Receptivity characteristics of under-expanded supersonic impinging jets. J. Fluid Mech. 889, A27.CrossRefGoogle Scholar
Karnam, A., Baier, F. & Gutmark, E.J. 2019 Near field acoustic analysis of cold supersonic rectangular jets. AIAA Paper 2019–0809.CrossRefGoogle Scholar
Karnam, A., Saleem, M. & Gutmark, E. 2023 Influence of nozzle geometry on screech instability closure. Phys. Fluids 35 (8), 086119.CrossRefGoogle Scholar
Kim, W.H. & Park, T.S. 2020 Influence of inlet vorticity and aspect ratio on axis-switching and mixing characteristics of heated rectangular jets. Intl J. Heat Mass Transfer 155, 119813.CrossRefGoogle Scholar
Kuo, C.W., Veltin, J. & Mclaughlin, D.K. 2010 Advanced acoustic assessment of small-scale military-style nozzles with chevrons. AIAA Paper 2010–3923.CrossRefGoogle Scholar
Lesieur, M., Métais, O. & Comte, P. 2005 Large-Eddy Simulations of Turbulence. Cambridge University Press.CrossRefGoogle Scholar
Li, W. 2019 Three-dimensional shock-wave/boundary-layer interaction in supersonic flow past a finite-span sharp wedge. Intl J. Aeronaut. Space 21 (8), 329336.CrossRefGoogle Scholar
Li, W. & Liu, H. 2019 Large-eddy simulation of shock-wave/boundary-layer interaction control using a backward facing step. Aerosp. Sci. Technol. 84, 10111019.CrossRefGoogle Scholar
Li, W., Nonomura, T. & Fujii, K. 2013 a Mechanism of controlling supersonic cavity oscillations using upstream mass injection. Phys. Fluids 25, 086101.CrossRefGoogle Scholar
Li, W., Nonomura, T., Oyama, A. & Fujii, K. 2013 b Feedback mechanism in supersonic laminar cavity flows. AIAA J. 51 (1), 253257.CrossRefGoogle Scholar
Li, X., He, F., Zhang, X., Hao, P. & Yao, Z. 2019 Shock motion and flow structure of an underexpanded jet in the helical mode. AIAA J. 57 (9), 39433953.CrossRefGoogle Scholar
Liepmann, D. & Gharib, M. 1992 The role of streamwise vorticity in the near-field entrainment of round jets. J. Fluid Mech. 245, 643668.CrossRefGoogle Scholar
Lim, H.D., Wei, X.F., Zang, B., Vevek, U.S. & Cui, Y.D. 2020 Short-time proper orthogonal decomposition of time-resolved schlieren images for transient jet screech characterization. Aerosp. Sci. Technol. 107, 106276.CrossRefGoogle Scholar
Liu, J., Khine, Y., Saleem, M., Rodriguez, O.L. & Gutmark, E. 2022 Effect of axial location of micro vortex generators on supersonic jet noise reduction. AIAA Paper 2022–1791.CrossRefGoogle Scholar
Mancinelli, M., Jaunet, V., Jordan, P. & Towne, A. 2019 Screech-tone prediction using upstream-travelling jet modes. Exp. Fluids 60, 19.CrossRefGoogle Scholar
Mercier, B., Castelain, T. & Bailly, C. 2017 Experimental characterisation of the screech feedback loop in underexpanded round jets. J. Fluid Mech. 824, 202229.CrossRefGoogle Scholar
Mora, P.A., Baier, F., Gutmark, E.J. & Kailasanath, K. 2016 Acoustics from a rectangular C-D nozzle exhausting over a flat surface. AIAA Paper 2016–1884.CrossRefGoogle Scholar
Morris, P.J., Mclaughlin, D.K. & Kuo, C.W. 2013 Noise reduction in supersonic jets by nozzle fluidic inserts. J. Sound Vib. 332 (17), 39924003.CrossRefGoogle Scholar
Munday, D., Heeb, N., Gutmark, E., Liu, J. & Kailasanath, K. 2012 Acoustic effect of chevrons on supersonic jets exiting conical convergent-divergent nozzles. AIAA J. 50 (11), 23362350.CrossRefGoogle Scholar
Nichols, J., Lele, S., Moin, P., Ham, F., Brès, G. & Bridges, J. 2012 Large-eddy simulation for supersonic rectangular jet noise prediction: effects of chevrons. AIAA Paper 2012–2212.CrossRefGoogle Scholar
Nonomura, T. & Fujii, K. 2009 Effects of difference scheme type in high-order weighted compact nonlinear schemes. J. Comput. Phys. 228 (10), 35333539.CrossRefGoogle Scholar
Nonomura, T. & Fujii, K. 2011 Overexpansion effects on characteristics of mach waves from a supersonic cold jet. AIAA J. 49 (10), 22822294.CrossRefGoogle Scholar
Nonomura, T., Iizuka, N. & Fujii, K. 2010 Freestream and vortex preservation properties of high-order weno and wcns on curvilinear grids. Comput. Fluids 39 (2), 197214.CrossRefGoogle Scholar
Nonomura, T., Nakano, H., Ozawa, Y., Terakado, D., Yamamoto, M., Fujii, K. & Oyama, A. 2019 Large eddy simulation of acoustic waves generated from a hot supersonic jet. Shock Waves 29, 11331154.CrossRefGoogle Scholar
Nonomura, T., Ozawa, Y., Abe, Y. & Fujii, K. 2021 Computational study on aeroacoustic fields of a transitional supersonic jeta. J. Acoust. Soc. Am. 149 (6), 44844502.CrossRefGoogle Scholar
Norum, T.D. 1983 Screech suppression in supersonic jets. AIAA J. 21 (2), 235240.CrossRefGoogle Scholar
Norum, T.D. & Seiner, J.M. 1982 Broadband shock noise from supersonic jets. AIAA J. 20 (1), 6873.CrossRefGoogle Scholar
Panda, J. 1999 An experimental investigation of screech noise generation. J. Fluid Mech. 378, 7196.CrossRefGoogle Scholar
Pannu, S.S. & Johannesen, N.H. 1976 The structure of jets from notched nozzles. J. Fluid Mech. 74 (3), 515528.CrossRefGoogle Scholar
Paramanantham, V., Janakiram, S. & Gopalapillai, R. 2022 Prediction of mach stem height in compressible open jets. Part 1. Overexpanded jets. J. Fluid Mech. 942, A48.CrossRefGoogle Scholar
Powell, A. 1953 The noise of choked jets. J. Acoust. Soc. Am. 25 (3), 385389.CrossRefGoogle Scholar
Powell, A. 2002 On the mechanism of choked jet noise. Proc. Phys. Soc. 66 (12), 1039.CrossRefGoogle Scholar
Powell, A., Umeda, Y. & Ishii, R. 1992 Observations of the oscillation modes of choked circular jets. J. Acoust. Soc. Am. 92 (5), 28232836.CrossRefGoogle Scholar
Powers, R.W., Kuo, C.W. & Mclaughlin, D.K. 2013 Experimental comparison of supersonic jets exhausting from military style nozzles with interior corrugations and fluidic inserts. AIAA Paper 2013–2186.CrossRefGoogle Scholar
Powers, R.W. & McLaughlin, D.K. 2017 Acoustics measurements of military-style supersonic beveled nozzle jets with interior corrugations. Intl J. Aeroacoust. 16 (1-2), 2143.CrossRefGoogle Scholar
Powers, R.W., Mclaughlin, D.K. & Morris, P.J. 2015 Noise reduction in supersonic jets from rectangular convergent-divergent nozzles. AIAA Paper 2015–0231.CrossRefGoogle Scholar
Prasad, A.L.N. & Unnikrishnan, S. 2023 Effect of plasma actuator-based control on flow-field and acoustics of supersonic rectangular jets. J. Fluid Mech. 964, A11.CrossRefGoogle Scholar
Prasad, A.L.N. & Unnikrishnan, S. 2024 Noise mitigation in rectangular jets through plasma actuator-based shear layer control. J. Fluid Mech. 979, A16.CrossRefGoogle Scholar
Prasad, C. & Morris, P.J. 2020 A study of noise reduction mechanisms of jets with fluid inserts. J. Sound Vib. 476, 115331.CrossRefGoogle Scholar
Rask, O., Kastner, J. & Gutmark, E. 2011 Understanding how chevrons modify noise in supersonic jet with flight effects. AIAA J. 49 (8), 15691576.CrossRefGoogle Scholar
Saleem, M., Karnam, A., Rodriguez, O., Liu, J. & Gutmark, E. 2023 Flow and acoustic fields investigation of noise reduction by micro vortex generators in supersonic nozzles. Phys. Fluids 35 (10), 106111.CrossRefGoogle Scholar
Samimy, M., Kim, J.H., Clancy, P.S. & Martens, S. 1998 Passive control of supersonic rectangular jets via nozzle trailing-edge modifications. AIAA J. 36 (7), 12301239.CrossRefGoogle Scholar
Samimy, M., Kim, J.H., Kastner, J., Adamovich, I. & Utkin, Y. 2007 Active control of high-speed and high-reynolds-number jets using plasma actuators. J. Fluid Mech. 578, 305330.CrossRefGoogle Scholar
Samimy, M., Kim, J.H., Kearney-Fischer, M. & SINHA, A. 2010 Acoustic and flow fields of an excited high reynolds number axisymmetric supersonic jet. J. Fluid Mech. 656, 507529.CrossRefGoogle Scholar
Sandhya, M. & Tide, P.S. 2018 Computational analysis of subsonic jets from rectangular nozzles with and without bevel. J. Spacecr. Rockets 55 (3), 749763.CrossRefGoogle Scholar
Schlinker, R.H., Simonich, J.C., Shannon, D.W., Reba, R.A. & Ladeinde, F. 2009 Supersonic jet noise from round and chevron nozzles: experimental studies. AIAA Paper 2009–3257.CrossRefGoogle Scholar
Schmid, P.J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.CrossRefGoogle Scholar
Schmid, P., Li, L., Juniper, M. & Pust, O. 2010 Applications of the dynamic mode decomposition. Theor. Comput. Fluid Dyn. 25 (1), 249259.CrossRefGoogle Scholar
Scupski, N., Akatsuka, J., Mclaughlin, D. & Morris, P. 2022 Experiments with rectangular supersonic jets with potential noise reduction technology. J. Acoust. Soc. Am. 151 (1), 5666.CrossRefGoogle ScholarPubMed
Seiner, J., Ukeiley, L. & Jansen, B. 2005 Aero-performance efficient noise reduction for the F404-400 engine. AIAA Paper 2005–3048.CrossRefGoogle Scholar
Semlitsch, B., Malla, B., Gutmark, E.J. & Mihăescu, M. 2020 The generation mechanism of higher screech tone harmonics in supersonic jets. J. Fluid Mech. 893, A9.CrossRefGoogle Scholar
Shannon, G., et al. 2016 A synthesis of two decades of research documenting the effects of noise on wildlife. Biol. Rev. 91 (4), 9821005.CrossRefGoogle ScholarPubMed
Shen, H. & Tam, C.K.W. 2002 Three-dimensional numerical simulation of the jet screech phenomenon. AIAA J. 40 (1), 3341.CrossRefGoogle Scholar
Shih, C., Krothapalli, A. & Gogineni, S. 1992 Experimental observations of instability modes in a rectangular jet. AIAA J. 30 (10), 23882394.CrossRefGoogle Scholar
Shima, E. & Jounouchi, T. 1997 Role of CFD in aeronautical engineering. In AUSM Type Upwind Schemes NAL SP-34.Google Scholar
Sinha, A., Rodríguez, D., Brès, G.A. & Colonius, T. 2014 Wavepacket models for supersonic jet noise. J. Fluid Mech. 742, 7195.CrossRefGoogle Scholar
Speth, R. & Gaitonde, D.V. 2013 Parametric study of a Mach 1.3 cold jet excited by the flapping mode using plasma actuators. Comput. Fluids 84, 1634.CrossRefGoogle Scholar
Suzuki, T. & Lele, S.K. 2003 Shock leakage through an unsteady vortex-laden mixing layer: application to jet screech. J. Fluid Mech. 490, 139167.CrossRefGoogle Scholar
Taira, K., Brunton, S.L., Dawson, S.T.M., Rowley, C.W., Colonius, T., McKeon, B.J., Schmidt, O.T., Gordeyev, S., Theofilis, V. & Ukeiley, L.S. 2017 Modal analysis of fluid flows: an overview. AIAA J. 55 (12), 40134041.CrossRefGoogle Scholar
Tam, C.K.W. 1988 The shock-cell structures and screech tone frequencies of rectangular and non-axisymmetric supersonic jets. J. Sound Vib. 121 (1), 135147.CrossRefGoogle Scholar
Tam, C.K.W. 1995 Supersonic jet noise. Annu. Rev. Fluid Mech. 27 (1), 1743.CrossRefGoogle Scholar
Tam, C.K.W. & Hu, F.Q. 1989 On the three families of instability waves of high-speed jets. J. Fluid Mech. 201, 447483.CrossRefGoogle Scholar
Tam, C.K.W. & Norum, T.D. 1992 Impingement tones of large aspect ratio supersonic rectangular jets. AIAA J. 30 (2), 304311.CrossRefGoogle Scholar
Tam, C.K.W., Parrish, S.A. & Viswanathan, K. 2014 Harmonics of jet screech tones. AIAA J. 52 (11), 24712479.CrossRefGoogle Scholar
Tam, C.K.W., Pastouchenko, N.N. & Viswanathan, K. 2005 Fine-scale turbulence noise from hot jets. AIAA J. 43, 16751683.CrossRefGoogle Scholar
Tinney, C., Valdez, J. & Murray, N. 2020 Aerodynamic performance of augmented supersonic nozzles. Exp. Fluids 61 (2), 48.CrossRefGoogle Scholar
Viswanathan, K. 2005 Nozzle shaping for reduction of jet noise from single jets. AIAA J. 43 (5), 10081022.CrossRefGoogle Scholar
Viswanathan, K. & Czech, M.J. 2011 Adaptation of the beveled nozzle for high-speed jet noise reduction. AIAA J. 49 (5), 932944.CrossRefGoogle Scholar
Viswanathan, K., Krothapalli, A., Seiner, J.M., Czech, M.J., Greska, B. & Jansen, B.J. 2011 Assessment of low-noise nozzle designs for fighter aircraft applications. J. Aircraft 48 (2), 412423.CrossRefGoogle Scholar
Viswanathan, K., Shur, M., Spalart, P.R. & Strelets, M. 2008 Flow and noise predictions for single and dual-stream beveled nozzles. AIAA J. 46 (3), 601626.CrossRefGoogle Scholar
Wan, C. & Yu, S.C.M. 2011 Investigation of air tab's effect in supersonic jets. J. Propul. Power 27 (5), 11571160.CrossRefGoogle Scholar
Wei, X.F., Chua, L.P., Lu, Z.B., Lim, H.D., Mariani, R., Cui, Y.D. & New, T.H. 2022 Experimental investigations of screech mitigation and amplification by beveled and double-beveled nozzles. J. Aerosp. Engng 35 (4), 04022050.CrossRefGoogle Scholar
Wei, X.F., Mariani, R., Chua, L.P., Lim, H.D. & New, T.H. 2019 Mitigation of under-expanded supersonic jet noise through stepped nozzles. J. Sound Vib. 459 (1), 114875.CrossRefGoogle Scholar
Westley, R. & Woolley, J. 1975 The near field sound pressures of a choked jet when oscillating in the spinning mode. AIAA Paper 1975–479.CrossRefGoogle Scholar
Wiegand, C. 2018 F-35 air vehicle technology overview. AIAA Paper 2018–3368.CrossRefGoogle Scholar
Wlezien, R.W. & Kibens, V. 1988 Influence of nozzle asymmetry on supersonic jets. AIAA J. 26 (1), 2733.CrossRefGoogle Scholar
Wu, J. & New, T.H. 2017 An investigation on supersonic bevelled nozzle jets. Aerosp. Sci. Technol. 63, 278293.CrossRefGoogle Scholar
Yong, J.S. & Wang, D.Y. 2015 Impact of noise on hearing in the military. Military Med. Res. 2 (1), 16.CrossRefGoogle ScholarPubMed
Yoon, S. & Jameson, A. 1988 Lower-upper symmetric-gauss-seidel method for the Euler and Navier–Stokes equations. AIAA J. 26 (9), 10251026.CrossRefGoogle Scholar
Yule, A.J. 1978 Large-scale structure in the mixing layer of a round jet. J. Fluid Mech. 89 (3), 413432.CrossRefGoogle Scholar
Zaman, K.B.M.Q. 1996 Axis switching and spreading of an asymmetric jet: the role of coherent structure dynamics. J. Fluid Mech. 316, 127.CrossRefGoogle Scholar
Zapryagaev, V., Kavun, I. & Kiselev, N. 2022 Flow feature in supersonic non-isobaric jet near the nozzle edge. Aerospace 9 (7), 379.CrossRefGoogle Scholar