Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T03:43:10.196Z Has data issue: false hasContentIssue false

Lift and drag coefficients of deformable bubbles in intense turbulence determined from bubble rise velocity

Published online by Cambridge University Press:  05 May 2020

Ashwanth K. R. Salibindla
Affiliation:
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD21210, USA
Ashik Ullah Mohammad Masuk
Affiliation:
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD21210, USA
Shiyong Tan
Affiliation:
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD21210, USA
Rui Ni*
Affiliation:
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD21210, USA
*
Email address for correspondence: rui.ni@jhu.edu

Abstract

We experimentally investigate the rise velocity of finite-sized bubbles in turbulence with a high energy dissipation rate of $\unicode[STIX]{x1D716}\gtrsim 0.5~\text{m}^{2}~\text{s}^{-3}$. In contrast to a 30–40 % reduction in rise velocity previously reported in weak turbulence (the Weber number ($We$) is much smaller than the Eötvös number ($Eo$); $We\ll 1<Eo$), the bubble rise velocity in intense turbulence shows a surprising new behaviour: an abrupt transition from an order of magnitude slower to a factor of two faster than rising in an otherwise quiescent medium. This transition occurs when $We$ increases from below one to above one, underscoring the key role played by the turbulence-induced deformation. We also formulate a model based on bubble–eddy coupling, and the results show an excellent agreement with not only our data in intense turbulence but also other works on weak turbulence. The model also helps us to extract the lift and drag coefficients of bubbles in intense turbulence for a wide range of $We$ and Reynolds numbers in situ.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adoua, R., Legendre, D. & Magnaudet, J. 2009 Reversal of the lift force on an oblate bubble in a weakly viscous linear shear flow. J. Fluid Mech. 628, 2341.CrossRefGoogle Scholar
Aliseda, A. & Lasheras, J. C. 2011 Preferential concentration and rise velocity reduction of bubbles immersed in a homogeneous and isotropic turbulent flow. Phys. Fluids 23 (9), 093301.CrossRefGoogle Scholar
Boettcher, E. J., Fineberg, J. & Lathrop, D. P. 2000 Turbulence and wave breaking effects on air-water gas exchange. Phys. Rev. Lett. 85 (9), 2030.CrossRefGoogle ScholarPubMed
Brücker, C. 1999 Structure and dynamics of the wake of bubbles and its relevance for bubble interaction. Phy. Fluids 11 (7), 17811796.CrossRefGoogle Scholar
Clift, R. & Gauvin, W. H. 1971 Motion of particles in turbulent gas streams. Brit. Chem. Engng 16 (2–3), 229.Google Scholar
Clift, R., Grace, J. R. & Weber, M. E. 2005 Bubbles, Drops, and Particles. Courier Corporation.Google Scholar
Dabiri, S., Lu, J. & Tryggvason, G. 2013 Transition between regimes of a vertical channel bubbly upflow due to bubble deformability. Phys. Fluids 25 (10), 102110.CrossRefGoogle Scholar
Dijkhuizen, W., van Sint Annaland, M. & Kuipers, J. A. M. 2010 Numerical and experimental investigation of the lift force on single bubbles. Chem. Engng Sci. 65 (3), 12741287.CrossRefGoogle Scholar
Ern, P., Risso, F., Fabre, D. & Magnaudet, J. 2012 Wake-induced oscillatory paths of bodies freely rising or falling in fluids. Annu. Rev. Fluid Mech. 44, 97121.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence: the Legacy of AN Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Hessenkemper, H., Ziegenhein, T. & Lucas, D. 2019 Contamination effects on the lift force of ellipsoidal air bubbles rising in saline water solutions. Chem. Engng J. (in press).Google Scholar
Hibiki, T. & Ishii, M. 2007 Lift force in bubbly flow systems. Chem. Engng Sci. 62 (22), 64576474.CrossRefGoogle Scholar
Hinze, J. O. 1955 Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1 (3), 289295.CrossRefGoogle Scholar
Ishii, M. & Chawla, T. C.1979 Local drag laws in dispersed two-phase flow. NASA Sti/Recon Tech. Rep. N 80.Google Scholar
Ishii, M. & Zuber, N. 1979 Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AIChE J. 25 (5), 843855.CrossRefGoogle Scholar
Kawase, Y. & Moo-Young, M. 1990 Mathematical models for design of bioreactors: applications of: Kolmogoroff’s theory of isotropic turbulence. Chem. Engng J. 43 (1), B19B41.CrossRefGoogle Scholar
Kolmogorov, A. 1949 On the breakage of drops in a turbulent flow. Dokl. Akad. Nauk. SSSR 66, 825828.Google Scholar
Legendre, D. & Magnaudet, J. 1998 The lift force on a spherical bubble in a viscous linear shear flow. J. Fluid Mech. 368, 81126.CrossRefGoogle Scholar
Lewandowski, B., Fertig, M., Krekel, G. & Ulbricht, M. 2018 Analysis of wake structures in bubbly flows using particle image velocimetry (PIV). In 7th European Young Engineers Conference Monograph, Warsaw University of Technology, Faculty of Chemical and Process Engineering, Warsaw, pp. 367375.Google Scholar
Lindt, J. T. 1972 On the periodic nature of the drag on a rising bubble. Chem. Engng Sci. 27 (10), 17751781.CrossRefGoogle Scholar
Liu, Z., Zheng, Y., Jia, L. & Zhang, Q. 2005 Study of bubble induced flow structure using PIV. Chem. Engng Sci. 60 (13), 35373552.CrossRefGoogle Scholar
Lohse, D. 2018 Bubble puzzles: from fundamentals to applications. Phys. Rev. Fluids 3 (11), 110504.CrossRefGoogle Scholar
Loisy, A. & Naso, A. 2017 Interaction between a large buoyant bubble and turbulence. Phys. Rev. Fluids 2 (1), 014606.CrossRefGoogle Scholar
Loth, E. 2008 Quasi-steady shape and drag of deformable bubbles and drops. Intl J. Multiphase Flow 34 (6), 523546.CrossRefGoogle Scholar
Lu, J. & Tryggvason, G. 2008 Effect of bubble deformability in turbulent bubbly upflow in a vertical channel. Phys. Fluids 20 (4), 040701.CrossRefGoogle Scholar
Lu, J. & Tryggvason, G. 2013 Dynamics of nearly spherical bubbles in a turbulent channel upflow. J. Fluid Mech. 732, 166189.CrossRefGoogle Scholar
Magnaudet, J. & Eames, I. 2000 The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annu. Rev. Fluid Mech. 32 (1), 659708.CrossRefGoogle Scholar
Masuk, A. U. M., Salibindla, A. & Ni, R. 2019a A robust virtual-camera 3D shape reconstruction of deforming bubbles/droplets with additional physical constraints. Intl J. Multiphase Flow 140 (28), 103088.Google Scholar
Masuk, A. U. M., Salibindla, A., Tan, S. & Ni, R. 2019b V-onset (vertical octagonal noncorrosive stirred energetic turbulence): a vertical water tunnel with a large energy dissipation rate to study bubble/droplet deformation and breakup in strong turbulence. Rev. Sci. Instrum. 90 (8), 085105.CrossRefGoogle Scholar
Mathai, V., Lohse, D. & Sun, C. 2020 Bubble and buoyant particle laden turbulent flows. Annu. Rev. Condens. Matter Phys. 11, 529559.CrossRefGoogle Scholar
Mazzitelli, I. M., Lohse, D. & Toschi, F. 2003 On the relevance of the lift force in bubbly turbulence. J. Fluid Mech. 488, 283313.CrossRefGoogle Scholar
Mercado, J. M., Prakash, V. N., Tagawa, Y., Sun, C., Lohse, D. & (International Collaboration for Turbulence Research) 2012 Lagrangian statistics of light particles in turbulence. Phys. Fluids 24 (5), 055106.CrossRefGoogle Scholar
Mougin, G. & Magnaudet, J. 2001 Path instability of a rising bubble. Phys. Rev. Lett. 88 (1), 014502.CrossRefGoogle ScholarPubMed
Poorte, R. E. G. & Biesheuvel, A. 2002 Experiments on the motion of gas bubbles in turbulence generated by an active grid. J. Fluid Mech. 461, 127154.CrossRefGoogle Scholar
Prakash, V. N., Tagawa, Y., Calzavarini, E., Mercado, J., Toschi, F., Lohse, D. & Sun, C. 2012 How gravity and size affect the acceleration statistics of bubbles in turbulence. New J. Phys. 14 (10), 105017.CrossRefGoogle Scholar
Risso, F. 2018 Agitation, mixing, and transfers induced by bubbles. Annu. Rev. Fluid Mech. 50, 2548.CrossRefGoogle Scholar
She, Z., Jackson, E. & Orszag, S. 1990 Intermittent vortex structures in homogeneous isotropic turbulence. Nature 344 (6263), 226228.CrossRefGoogle Scholar
Spelt, P. D. M. & Biesheuvel, A. 1997 On the motion of gas bubbles in homogeneous isotropic turbulence. J. Fluid Mech. 336, 221244.CrossRefGoogle Scholar
Sridhar, G. & Katz, J. 1995 Drag and lift forces on microscopic bubbles entrained by a vortex. Phys. Fluids 7 (2), 389399.CrossRefGoogle Scholar
Tan, S., Salibindla, A., Masuk, A. U. M. & Ni, R. 2019 An open-source Shake-the-Box method and its performance evaluation. In 13th International Symposium on Particle Image Velocimetry ISPIV 2019.Google Scholar
Tan, S., Salibindla, A., Masuk, A. U. M. & Ni, R. 2020 Introducing OpenLPT: new method of removing ghost particles and high-concentration particle shadow tracking. Exp. Fluids 61 (2), 47.CrossRefGoogle Scholar
Tomiyama, A., Kataoka, I., Zun, I. & Sakaguchi, T. 1998 Drag coefficients of single bubbles under normal and micro gravity conditions. JSME Intl J. B 41 (2), 472479.CrossRefGoogle Scholar
Tomiyama, A., Tamai, H., Zun, I. & Hosokawa, S. 2002 Transverse migration of single bubbles in simple shear flows. Chem. Engng Sci. 57 (11), 18491858.CrossRefGoogle Scholar
Wang, L. & Maxey, M. R. 1993 The motion of microbubbles in a forced isotropic and homogeneous turbulence. Appl. Sci. Res. 51 (1–2), 291296.CrossRefGoogle Scholar
Woolf, D. K. 1997 Bubbles and their role in gas exchange. In The Sea Surface and Global Change. Cambridge University Press.Google Scholar
Ziegenhein, T., Tomiyama, A. & Lucas, D. 2018 A new measuring concept to determine the lift force for distorted bubbles in low morton number system: results for air/water. Intl J. Multiphase Flow 108, 1124.CrossRefGoogle Scholar