Article contents
Linear instability analysis of convection in a laterally heated cylinder
Published online by Cambridge University Press: 17 April 2014
Abstract
The three-dimensional instabilities of axisymmetric flow are investigated in a laterally heated vertical cylinder by linear stability analysis. Heating is confined to a central zone on the sidewall of the cylinder, while other parts of the sidewall are insulated and both ends of the cylinder are cooled. The length of the heated zone equals the radius of the cylinder. For three different aspect ratios, $A= 1.92 $, 2, 2.1 ($A=\mathrm{height}$/radius), the dependence of the critical Rayleigh number on the Prandtl number (from 0.02 to 6.7) has been studied in detail. For such a kind of laterally heated convection, some interesting stability results are obtained. A monotonous instability curve is obtained for $A= 1.92 $, while the instability curves for $A= 2 $ and $A= 2.1 $ are non-monotonous and multivalued. In particular, an instability island has been found for $A=2$. Moreover, mechanisms corresponding to different instability results are obtained when the Prandtl number changes. At small Prandtl number, the flow is oscillatory unstable, which is dominated by hydrodynamic instability. At intermediate Prandtl number, the interaction between buoyancy and shear in the base flow plays a more important role than pure hydrodynamic instability. At even higher Prandtl number, Rayleigh–Bénard instability becomes the dominant process and the flow loses stability through steady bifurcation.
- Type
- Papers
- Information
- Copyright
- © 2014 Cambridge University Press
References
- 8
- Cited by