Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T12:26:38.490Z Has data issue: false hasContentIssue false

Liquid rope coiling: a synoptic view

Published online by Cambridge University Press:  28 December 2016

Neil M. Ribe*
Affiliation:
Laboratoire FAST, Univ. Paris-Sud, CNRS, Univ. Paris-Saclay, 23-25 rue Jean Rostand, Parc Club Orsay Université, F-91405 Orsay, France
*
Email address for correspondence: ribe@fast.u-psud.fr

Abstract

In liquid rope coiling, a slender jet of viscous fluid falling onto a rigid surface builds a rotating corkscrew-like structure. Here, I use a numerical continuation method to construct a complete regime diagram for liquid rope coiling. I first consider the onset of coiling, and show that a suitable onset criterion is that the radius $a_{1}$ of the rope itself be just equal to the radius $R$ of the coil. Numerical calculation of the critical surface $a_{1}=R$ in the space of the dimensionless fall height $\unicode[STIX]{x1D6F1}_{H}$ , flow rate $\unicode[STIX]{x1D6F1}_{Q}$ and nozzle diameter $\unicode[STIX]{x1D6F1}_{d}$ shows that the surface has four distinct asymptotic limits corresponding to a viscous (V) mode, a gravitational (G) mode and two inertial modes (I1, I2) which are distinguished by how much the tail of the jet is stretched by gravity. Exact expressions for the onset frequencies in each of these four modes are determined. Finally, the regime diagram is constructed in the form of contour plots of the dimensionless coiling frequency as a function of $\unicode[STIX]{x1D6F1}_{H}$ and $\unicode[STIX]{x1D6F1}_{Q}$ for several values of $\unicode[STIX]{x1D6F1}_{d}$ . The diagram exhibits a total of six modes: V, G, I1, I2, a multivalued inertio-gravitational (IG) mode and a third inertial mode I3 with viscosity-dominated stretching of the tail. The regime diagram permits prediction of the coiling frequency for given values of the fall height, flow rate, viscosity and nozzle diameter, and should therefore be useful in practical applications ranging from non-woven textile production to 3D printing.

Type
Rapids
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, G. & MacKenzie, R. 1959 Height of fall versus frequency in liquid rope-coil effect. Am. J. Phys. 27, 112115.CrossRefGoogle Scholar
Barnes, G. & Woodcock, R. 1958 Liquid rope-coil effect. Am. J. Phys. 26, 205209.CrossRefGoogle Scholar
Blount, M.2010 Bending and buckling of a falling viscous thread. PhD thesis, University of Cambridge, Cambridge, UK.Google Scholar
Cruickshank, J. O.1980 Viscous fluid buckling: a theoretical and experimental analysis with extensions to general fluid stability. PhD thesis, Iowa State University, Ames, Iowa.Google Scholar
Cruickshank, J. O. 1988 Low-Reynolds-number instabilities in stagnating jet flows. J. Fluid Mech. 193, 111127.CrossRefGoogle Scholar
Cruickshank, J. O. & Munson, B. R. 1981 Viscous fluid buckling of plane and axisymmetric jets. J. Fluid Mech. 113, 221239.CrossRefGoogle Scholar
Griffiths, R. W. & Turner, J. S. 1988 Folding of viscous plumes impinging on a density or viscosity interface. Geophys. J. 95, 397419.CrossRefGoogle Scholar
Habibi, M., Hosseini, S. H., Khatami, M. H. & Ribe, N. M. 2014 Liquid supercoiling. Phys. Fluids 26, 024101.CrossRefGoogle Scholar
Habibi, M., Maleki, M., Golestanian, R., Ribe, N. M. & Bonn, D. 2006 Dynamics of liquid rope coiling. Phys. Rev. E 74, 066306.Google ScholarPubMed
Habibi, M., Rahmani, Y., Bonn, D. & Ribe, N. M. 2010 Buckling of liquid columns. Phys. Rev. Lett. 104, 074301.CrossRefGoogle ScholarPubMed
Huppert, H. E. 1986 The intrusion of fluid mechanics into geology. J. Fluid Mech. 173, 557594.CrossRefGoogle Scholar
Mahadevan, L., Ryu, W. S. & Samuel, A. D. T. 1998 Fluid ‘rope trick’ investigated. Nature 392, 140.CrossRefGoogle Scholar
Mahadevan, L., Ryu, W. S. & Samuel, A. D. T. 2000 Correction: fluid ‘rope trick’ investigated. Nature 403, 502.Google Scholar
Maleki, M., Habibi, M., Golestanian, R., Ribe, N. M. & Bonn, D. 2004 Liquid rope coiling on a solid surface. Phys. Rev. Lett. 93, 214502.CrossRefGoogle ScholarPubMed
Ribe, N. M. 2004 Coiling of viscous jets. Proc. R. Soc. Lond. A 460, 32233239.CrossRefGoogle Scholar
Ribe, N. M., Habibi, M. & Bonn, D. 2006a Stability of liquid rope coiling. Phys. Fluids 18, 084102.CrossRefGoogle Scholar
Ribe, N. M., Huppert, H. E., Hallworth, M. A., Habibi, M. & Bonn, D. 2006b Multiple coexisting states of liquid rope coiling. J. Fluid Mech. 555, 275297.CrossRefGoogle Scholar
Tchavdarov, B., Yarin, A. L. & Radev, S. 1993 Buckling of thin liquid jets. J. Fluid Mech. 253, 593615.CrossRefGoogle Scholar