Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T18:41:37.589Z Has data issue: false hasContentIssue false

Low-frequency unsteadiness in shock wave–turbulent boundary layer interaction

Published online by Cambridge University Press:  24 April 2012

Stephan Priebe
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA Department of Aerospace Engineering, University of Maryland, College Park, MD 20742, USA
M. Pino Martín*
Affiliation:
Department of Aerospace Engineering, University of Maryland, College Park, MD 20742, USA
*
Email address for correspondence: pmartin@umiacs.umd.edu

Abstract

The low-frequency unsteadiness is characterized in the direct numerical simulation of a shock wave–turbulent boundary layer interaction generated by a compression ramp in Mach 2.9 flow. Consistent with experimental observations, the shock wave in the simulation undergoes a broadband streamwise oscillation at frequencies approximately two orders of magnitude lower than the characteristic frequency of the energetic turbulent scales in the incoming boundary layer. The statistical relation between the low-frequency shock motion and the upstream and downstream flow is investigated. The shock motion is found to be related to a breathing of the separation bubble and an associated flapping of the separated shear layer. A much weaker statistical relation is found with the incoming boundary layer. In order to further characterize the low-frequency mode in the downstream separated flow, the temporal evolution of the low-pass filtered flow field is investigated. The nature of the velocity and vorticity profiles in the initial part of the interaction is found to change considerably depending on the phase of the low-frequency motion. It is conjectured that these changes are due to an inherent instability in the downstream separated flow, and that this instability is the physical origin of the low-frequency unsteadiness. The low-frequency mode observed here is, in certain aspects, reminiscent of an unstable global mode obtained by linear stability analysis of the mean flow in a reflected shock interaction (Touber & Sandham, Theor. Comput. Fluid Dyn., vol. 23, 2009, pp. 79–107).

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bendat, J. S. & Piersol, A. G. 2000 Random Data: Analysis and Measurement Procedures, 3rd edn. Wiley.Google Scholar
2. Benignus, V. A. 1969 Estimation of the coherence spectrum and its confidence interval using the fast Fourier transform. IEEE Trans. Audio Electroacoust. AU-17 (2), 145150.CrossRefGoogle Scholar
3. Beresh, S. J., Clemens, N. T. & Dolling, D. S. 2002 Relationship between upstream turbulent boundary-layer velocity fluctuations and separation shock unsteadiness. AIAA J. 40 (12), 24122422.CrossRefGoogle Scholar
4. Bortel, R. & Sovka, P. 2007 Approximation of statistical distribution of magnitude squared coherence estimated with segment overlapping. Signal Process. 87 (5), 11001117.CrossRefGoogle Scholar
5. Cherry, N. J., Hillier, R. & Latour, M. E. M. P. 1984 Unsteady measurements in a separated and reattaching flow. J. Fluid Mech. 144, 1346.CrossRefGoogle Scholar
6. Clemens, N. T. & Narayanaswamy, V. 2009 Shock/turbulent boundary layer interactions: Review of recent work on sources of unsteadiness. In 39th AIAA Fluid Dynamics Conference, AIAA Paper 2009-3710.Google Scholar
7. Debiève, J.-F. & Dupont, P. 2009 Dependence between the shock and the separation bubble in a shock wave boundary layer interaction. Shock Waves 19 (6), 499506.CrossRefGoogle Scholar
8. Délery, J. & Marvin, J. G. 1986 Shock-wave boundary layer interactions. AGARDograph 280.Google Scholar
9. Dolling, D. S. 2001 Fifty years of shock-wave/boundary-layer interaction research: What next? AIAA J. 39 (8), 15171531.CrossRefGoogle Scholar
10. Dupont, P., Haddad, C. & Debiève, J. F. 2006 Space and time organization in a shock-induced separated boundary layer. J. Fluid Mech. 559, 255277.CrossRefGoogle Scholar
11. Dupont, P., Piponniau, S., Sidorenko, A. & Debiève, J. F. 2008 Investigation by particle image velocimetry measurements of oblique shock reflection with separation. AIAA J. 46 (6), 13651370.CrossRefGoogle Scholar
12. Dussauge, J.-P., Dupont, P. & Debiève, J.-F. 2006 Unsteadiness in shock wave boundary layer interactions with separation. Aerosp. Sci. Technol. 10 (2), 8591.CrossRefGoogle Scholar
13. Eaton, J. K. & Johnston, J. P. 1982 Low frequency unsteadiness of a reattaching turbulent shear layer. In Turbulent Shear Flows 3 (ed. Bradbury, L. J. S., Durst, F., Launder, B. E., Schmidt, F. W. & Whitelaw, J. H. ), pp. 162170. Springer.CrossRefGoogle Scholar
14. Erengil, M. E. & Dolling, D. S. 1991 Unsteady wave structure near separation in a Mach 5 compression ramp interaction. AIAA J. 29 (5), 728735.CrossRefGoogle Scholar
15. Ganapathisubramani, B., Clemens, N. T. & Dolling, D. S. 2006 Large-scale motions in a supersonic turbulent boundary layer. J. Fluid Mech. 556, 271282.CrossRefGoogle Scholar
16. Ganapathisubramani, B., Clemens, N. T. & Dolling, D. S. 2007 Effects of upstream boundary layer on the unsteadiness of shock-induced separation. J. Fluid Mech. 585, 369394.CrossRefGoogle Scholar
17. Ganapathisubramani, B., Clemens, N. T. & Dolling, D. S. 2009 Low-frequency dynamics of shock-induced separation in a compression ramp interaction. J. Fluid Mech. 636, 397425.CrossRefGoogle Scholar
18. Green, J. E. 1970 Reflexion of an oblique shock wave by a turbulent boundary layer. J. Fluid Mech. 40 (1), 8195.CrossRefGoogle Scholar
19. Hou, Y. X., Clemens, N. T. & Dolling, D. S. 2003 Wide-field PIV study of shock-induced turbulent boundary layer separation. In 41st AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2003-441.Google Scholar
20. Humble, R. A., Elsinga, G. E., Scarano, F. & van Oudheusden, B. W. 2009a Three-dimensional instantaneous structure of a shock wave/turbulent boundary layer interaction. J. Fluid Mech. 622, 3362.CrossRefGoogle Scholar
21. Humble, R. A., Scarano, F. & van Oudheusden, B. W. 2009b Unsteady aspects of an incident shock wave/turbulent boundary layer interaction. J. Fluid Mech. 635, 4774.CrossRefGoogle Scholar
22. Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.CrossRefGoogle Scholar
23. Jiang, G.-S. & Shu, C.-W. 1996 Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126 (1), 202228.CrossRefGoogle Scholar
24. Kiya, M. & Sasaki, K. 1983 Structure of a turbulent separation bubble. J. Fluid Mech. 137, 83113.CrossRefGoogle Scholar
25. Kiya, M. & Sasaki, K. 1985 Structure of large-scale vortices and unsteady reverse flow in the reattaching zone of a turbulent separation bubble. J. Fluid Mech. 154, 463491.CrossRefGoogle Scholar
26. Lee, I. & Sung, H. J. 2002 Multiple-arrayed pressure measurement for investigation of the unsteady flow structure of a reattaching shear layer. J. Fluid Mech. 463, 377402.CrossRefGoogle Scholar
27. Martín, M. P. 2007 Direct numerical simulation of hypersonic turbulent boundary layers. Part 1. Initialization and comparison with experiments. J. Fluid Mech. 570, 347364.CrossRefGoogle Scholar
28. Martín, M. P., Taylor, E. M., Wu, M. & Weirs, V. G. 2006 A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence. J. Comput. Phys. 220 (1), 270289.CrossRefGoogle Scholar
29. Na, Y. & Moin, P. 1998 Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 374, 379405.CrossRefGoogle Scholar
30. Piponniau, S., Dussauge, J. P., Debiève, J. F. & Dupont, P. 2009 A simple model for low-frequency unsteadiness in shock-induced separation. J. Fluid Mech. 629, 87108.CrossRefGoogle Scholar
31. Priebe, S. & Martín, M. P. 2009 Analysis of low-frequency unsteadiness in the direct numerical simulation of a shockwave and turbulent boundary layer interaction. In 39th AIAA Fluid Dynamics Conference, AIAA Paper 2009-3711.Google Scholar
32. Priebe, S., Wu, M. & Martín, M. P. 2009 Direct numerical simulation of a reflected-shock-wave/turbulent-boundary-layer interaction. AIAA J. 47 (5), 11731185.CrossRefGoogle Scholar
33. Ringuette, M. J., Bookey, P., Wyckham, C. & Smits, A. J. 2009 Experimental study of a Mach 3 compression ramp interaction at . AIAA J. 47 (2), 373385.CrossRefGoogle Scholar
34. Ringuette, M. J., Wu, M. & Martín, M. P. 2008a Low Reynolds number effects in a Mach 3 shock/turbulent-boundary-layer interaction. AIAA J. 46 (7), 18841887.CrossRefGoogle Scholar
35. Ringuette, M. J., Wu, M. & Martín, M. P. 2008b Coherent structures in direct numerical simulation of turbulent boundary layers at Mach 3. J. Fluid Mech. 594, 5969.CrossRefGoogle Scholar
36. Settles, G. S., Fitzpatrick, T. J. & Bogdonoff, S. M. 1979 Detailed study of attached and separated compression corner flow fields in high Reynolds number supersonic flow. AIAA J. 17 (6), 579585.CrossRefGoogle Scholar
37. Simens, M. P., Jiménez, J., Hoyas, S. & Mizuno, Y. 2009 A high-resolution code for turbulent boundary layers. J. Comput. Phys. 228 (11), 42184231.CrossRefGoogle Scholar
38. Smits, A. J. & Dussauge, J.-P. 2006 Turbulent Shear Layers in Supersonic Flow, 2nd edn. Springer.Google Scholar
39. Souverein, L. J., Dupont, P., Debiève, J.-F., Dussauge, J.-P., van Oudheusden, B. W. & Scarano, F. 2010 Effect of interaction strength on unsteadiness in turbulent shock-wave-induced separations. AIAA J. 48 (7), 14801493.CrossRefGoogle Scholar
40. Taylor, E. M., Wu, M. & Martín, M. P. 2007 Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence. J. Comput. Phys. 223 (1), 384397.CrossRefGoogle Scholar
41. Thomas, F. O., Putnam, C. M. & Chu, H. C. 1994 On the mechanism of unsteady shock oscillation in shock wave/turbulent boundary layer interactions. Exp. Fluids 18 (1–2), 6981.CrossRefGoogle Scholar
42. Touber, E. & Sandham, N. D. 2009 Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble. Theor. Comput. Fluid Dyn. 23 (2), 79107.CrossRefGoogle Scholar
43. Williamson, J. H. 1980 Low-storage Runge–Kutta schemes. J. Comput. Phys. 35 (1), 4856.CrossRefGoogle Scholar
44. Wu, M. & Martín, M. P. 2007 Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp. AIAA J. 45 (4), 879889.CrossRefGoogle Scholar
45. Wu, M. & Martín, M. P. 2008 Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data. J. Fluid Mech. 594, 7183.CrossRefGoogle Scholar
46. Xu, S. & Martín, M. P. 2004 Assessment of inflow boundary conditions for compressible turbulent boundary layers. Phys. Fluids 16 (7), 26232639.CrossRefGoogle Scholar

Priebe and Martin supplementary movie

The movie shows the time-resolved evolution of the low-pass filtered flow field during detailed simulation 1. An isocontour of pressure gradient $|\nabla{p}|\delta/p_{\infty}=2$ indicates the shock, $(u,w)$-streamlines indicate the state of the recirculating flow in the corner, and a color contour map of the spanwise vorticity indicates the structure of the separated shear layer. In addition, the $u$-velocity profile at $x/\delta=-4$ (shown as an inset) indicates the state of the inflow boundary layer. The flow field is spanwise-averaged and low-pass filtered (cutoff Strouhal number 0.22).

Download Priebe and Martin supplementary movie(Video)
Video 19.1 MB

Priebe and Martin supplementary movie

Same as movie 1, except that the data from detailed simulation 2 is shown.

Download Priebe and Martin supplementary movie(Video)
Video 22.6 MB