Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T03:47:39.420Z Has data issue: false hasContentIssue false

Mach reflection of three-dimensional curved shock waves on V-shaped blunt leading edges

Published online by Cambridge University Press:  22 November 2023

Tao Zhang
Affiliation:
School of Aerospace Engineering, Xiamen University, Xiamen, Fujian 361005, PR China
Jianrui Cheng
Affiliation:
School of Aerospace Engineering, Xiamen University, Xiamen, Fujian 361005, PR China
Chongguang Shi*
Affiliation:
School of Aerospace Engineering, Xiamen University, Xiamen, Fujian 361005, PR China
Chengxiang Zhu*
Affiliation:
School of Aerospace Engineering, Xiamen University, Xiamen, Fujian 361005, PR China
Yancheng You
Affiliation:
School of Aerospace Engineering, Xiamen University, Xiamen, Fujian 361005, PR China
*
Email addresses for correspondence: chongguangshi@xmu.edu.cn, chengxiang.zhu@xmu.edu.cn
Email addresses for correspondence: chongguangshi@xmu.edu.cn, chengxiang.zhu@xmu.edu.cn

Abstract

Theoretical investigation of the primary Mach reflection (MR) configuration on V-shaped blunt leading edges (VBLEs) forms the focus of this study. By ignoring the secondary interactions, a theoretical method based on a simplified form of the continuity relation is developed to predict the shock configurations, including the detached shock, the Mach stem, the transmitted shock and the triple point. The comparison of the theoretical results with both numerical and previous experimental results shows the reliability of the theoretical approach in predicting shock structures across a wide range of free stream and geometric parameters. The theoretical model provides a detailed comprehension of the occurrence mechanism of inverse MRs on VBLEs and the influence of the free stream and geometric parameters on primary MR configurations. Along with the primary MR configuration, the curved shock or compression waves generated by the crotch are solved and offer insight into the transition from the MR to the regular reflection from the same family (sRR). The increase of the ratio $R/r$ and the free stream Mach number $M_0$ appears to facilitate the transition, while the effect of the half-span angle $\beta$ is non-monotonic. The predicted shock positions allow for the identification of the transition boundary between the primary MR and sRR. It is found that $R/r$ below a threshold (for a set $M_0$ value) produces MR, irrespective of $\beta$. If this threshold is exceeded, the configuration can transition from the primary MR to sRR and then back to the primary MR as $\beta$ increases.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alperin, M. 1950 A study of detached shock waves in two-dimensions. PhD thesis, California Institute of Technology.Google Scholar
Ben-Dor, G. 2007 Shock Wave Reflection Phenomena. Springer.Google Scholar
Ben-dor, G., Vasilev, E.I., Elperin, T. & Zenovich, A.V. 2003 Self-induced oscillations in the shock wave flow pattern formed in a stationary supersonic flow over a double wedge. Phys. Fluids 15, L85L88.CrossRefGoogle Scholar
Bisek, N.J. 2016 High-fidelity simulations of the hifire-6 flow path. AIAA Paper 2016-1116.CrossRefGoogle Scholar
Busemann, A. 1949 A review of analytical methods for the treatsent of flow with detached shocks. NACA Rep. TN1858.Google Scholar
Druguet, M.C., Candler, G.V. & Nompelts, I. 2005 Effects of numerics on Navier–Stokes computations of hypersonic double-cone flows. AIAA J. 43, 616623.CrossRefGoogle Scholar
Durna, A.S., Barada, M.E.H.A. & Celik, B. 2016 Shock interaction mechanisms on a double wedge at Mach 7. Phys. Fluids 28, 096101.CrossRefGoogle Scholar
Edney, B. 1968 a Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock. FFA Rep. No. 115. Aeronautical Research Institute of Sweden.CrossRefGoogle Scholar
Edney, B. 1968 b Effects of shock impingement on the heat transfer around blunt bodies. AIAA J. 6, 1521.CrossRefGoogle Scholar
Emanuel, G. 1982 Near-field analysis of a compressive supersonic ramp. Phys. Fluids 25, 11271133.CrossRefGoogle Scholar
Emanuel, G. 1983 Numerical method and results for inviscid supersonic flow over a compressive ramp. Comput. Fluids 11, 367377.CrossRefGoogle Scholar
Gao, B. & Wu, Z.N. 2010 A study of the flow structure for Mach reflection in steady supersonic flow. J. Fluid Mech. 656, 2950.CrossRefGoogle Scholar
Gollan, R.J. & Smart, M.K. 2013 Design of modular shape-transition inlets for a conical hypersonic vehicle. J. Propul. Power 29, 832838.CrossRefGoogle Scholar
Grasso, F., Purpura, C., Chanetz, B. & Delery, J. 2003 Type III and type IV shock/shock interferences: theoretical and experimental aspects. Aerosp. Sci. Technol. 7, 93106.CrossRefGoogle Scholar
Guan, X.K., Bai, C.Y., Lin, J. & Wu, Z.N. 2020 Mach reflection promoted by an upstream shock wave. J. Fluid Mech. 903, A44.CrossRefGoogle Scholar
Hida, K. 1953 An approximate study of the detached shock wave in front of a circular cylinder and a sphere. J. Phys. Soc. Japan 8, 740745.CrossRefGoogle Scholar
Kaattari, G.E. 1961 Predicting shock envelopes about two types of vehicles at large angles of attack. NASA Tech. Note D-860.Google Scholar
Kim, C.S. 1956 Experimental studies of supersonic flow past a circular cylinder. J. Phys. Soc. Japan 11, 439445.Google Scholar
Ladenburg, R., VanVoorhis, C.C. & Winckler, J. 1946 Interferometric study of supersonic phenomena. Part I: a supersonic air jet at 60 lb/in2 tank pressure. NAVORD Rep. 69–46. US Navy Department Bureau of Ordinance.Google Scholar
Li, H. & Ben-Dor, G. 1997 A parametric study of Mach reflection in steady flows. J. Fluid Mech. 341, 101125.CrossRefGoogle Scholar
Li, Z.F., Zhang, Z.Y., Wang, J. & Yang, J.M. 2019 Pressure-heat flux correlations for shock interactions on V-shaped blunt leading edges. AIAA J. 57, 45884592.CrossRefGoogle Scholar
Lighthill, M.J. 1957 Dynamics of a dissociating gas. Part I: equilibrium flow. J. Fluid Mech. 2, 132.CrossRefGoogle Scholar
Matsuo, K., Miyazato, Y. & Kim, H.D. 1999 Shock train and pseudo-shock phenomena in internal gas flows. Prog. Aerosp. Sci. 35, 33100.CrossRefGoogle Scholar
Moeckel, W.E. 1949 Approximate method for predicting the form and location of detached shock waves ahead of plane or axially symmetrical bodies. NACA Tech. Note 1921.Google Scholar
von Neumann, J. 1943 Oblique reflection of shock waves. In John von Neumann Collected Works. Pergamon Press.Google Scholar
von Neumann, J. 1945 Refraction, intersection and reflection of shock waves. In John von Neumann Collected Works. Pergamon Press.Google Scholar
Olejniczak, J., Wright, W.J. & Candler, G.V. 1997 Numerical study of inviscid shock interactions on double-wedge geometries. J. Fluid Mech. 352, 125.CrossRefGoogle Scholar
Panaras, A.G. & Drikakis, D. 2009 High-speed unsteady flows around spiked-blunt bodies. Phys. Fluids 632, 6996.Google Scholar
Roe, P.L. 1981 Approximate riemann solvers, parameter vectors, and difference schemes. Comput. Fluids 43, 357372.Google Scholar
Sinclair, J. & Cui, X. 2017 A theoretical approximation of the shock standoff distance for supersonic flows around a circular cylinder. Phys. Fluids 29, 026102.CrossRefGoogle Scholar
Spalart, P. & Allmaras, S. 1992 A one-equation turbulence model for aerodynamic flows. AIAA Paper 1992-0439.CrossRefGoogle Scholar
Tumuklu, O., Levin, D.A. & Theofilis, V. 2018 Investigation of unsteady, hypersonic, laminar separated flows over a double cone geometry using a kinetic approach. Phys. Fluids 30, 046103.CrossRefGoogle Scholar
Wang, J., Li, Z.F. & Yang, J.M. 2021 Shock-induced pressureheating loads on V-shaped leading edges with nonuniform bluntness. AIAA J. 59, 11141118.CrossRefGoogle Scholar
Wang, J., Li, Z.F., Zhang, Z.Y. & Yang, J.M. 2020 Shock interactions on V-shaped blunt leading edges with various conic crotches. AIAA J. 58, 14071411.CrossRefGoogle Scholar
Wieting, A.R. & Holden, M.S. 1989 Experimental shock-wave interference heating on a cylinder at Mach 6 and 8. AIAA J. 27, 15571565.CrossRefGoogle Scholar
Xiao, F.S., Li, Z.F., Zhang, Z.Y., Zhu, Y.J. & Yang, J.M. 2018 Hypersonic shock wave interactions on a V-shaped blunt leading edge. AIAA J. 56, 356367.CrossRefGoogle Scholar
You, Y.C. 2011 An overview of the advantages and concerns of hypersonic inward turning inlets. AIAA Paper 2011–2269.CrossRefGoogle Scholar
Zhang, E.L., Li, Z.F., Li, Y.M. & Yang, J.M. 2019 Three-dimensional shock interactions and vortices on a V-shaped blunt leading edge. Phys. Fluids 31, 086102.CrossRefGoogle Scholar
Zhang, Z.Y., Li, Z.F. & Yang, J.M. 2021 Transitions of shock interactions on V-shaped blunt leading edges. J. Fluid Mech. 912, A12.CrossRefGoogle Scholar
Zhang, T., Xu, K.J., Shi, C.G., Zhu, C.X. & You, Y.C. 2023 Reflection and transition of planar curved shock waves. J. Fluid Mech. 959, A11.CrossRefGoogle Scholar
Zhang, Y.J., Wang, J. & Li, Z.F. 2022 Shock-induced heating loads on V-shaped leading edges with elliptic cross section. AIAA J. 60, 69586962.CrossRefGoogle Scholar
Zhong, X.L. 1994 Application of essentially non-oscillatory schemes to unsteady hypersonic shock-shock interference heating problems. AIAA J. 32, 16061616.CrossRefGoogle Scholar