Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T03:33:15.088Z Has data issue: false hasContentIssue false

Magneto-gravitational convection in a vertical layer of ferrofluid in a uniform oblique magnetic field

Published online by Cambridge University Press:  22 April 2016

Habibur Rahman
Affiliation:
Department of Mathematics, H38, Swinburne University of Technology, John Street, Hawthorn, Victoria 3122, Australia
Sergey A. Suslov*
Affiliation:
Department of Mathematics, H38, Swinburne University of Technology, John Street, Hawthorn, Victoria 3122, Australia
*
Email address for correspondence: ssuslov@swin.edu.au

Abstract

The stability of base gravitational convection in a layer of ferrofluid confined between two vertical wide and tall non-magnetic plates, heated from one side, cooled from the other and placed in a uniform oblique external magnetic field is studied. Two distinct mechanisms, thermo-gravitational and thermo-magnetic, are found to be responsible for the appearance of various stationary and wave-like instability modes. The characteristics of all instability modes are investigated as functions of the orientation angles of the applied magnetic field and its magnitude for various values of magnetic parameters when both the thermo-magnetic and gravitational buoyancy mechanisms are active. The original three-dimensional problem is cast in an equivalent two-dimensional form using generalised Squire’s transformations, which significantly reduces a computational cost. Subsequently, full three-dimensional instability patterns are recovered using the inverse Squire’s transformation, and the optimal field and pattern orientations are determined.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Department of Mathematics, Khulna University of Engingeering & Technology, Khulna 9203, Bangladesh.

References

Bashtovoy, V. G., Berkovsky, B. M. & Vislovich, A. N. 1988 Introduction to Thermomechanics of Magnetic Fluids. Hemisphere.Google Scholar
Batchelor, G. K. 1954 Heat transfer by free convection across a closed cavity between vertical boundaries at different temperatures. Q. Appl. Maths. 12, 209233.CrossRefGoogle Scholar
Belyaev, A. V. & Smorodin, B. L. 2010 The stability of ferrofluid flow in a vertical layer subject to lateral heating and horizontal magnetic field. J. Magn. Magn. Mater. 322, 25962606.CrossRefGoogle Scholar
Blums, E. Ya., Maiorov, M. M. & Tsebers, A. O. 1989 Magnetic Fluids. Zinatne, Riga, Latvia (in Russian).Google Scholar
Bozhko, A. A. & Putin, G. F. 1991 Experimental investigation of thermo-magnetic convection in uniform external field. Bull. Acad. Sci. USSR 55, 11491156.Google Scholar
Bozhko, A. A. & Putin, G. F. 2003 Heat transfer and flow patterns in ferrofluid convection. Magnetohydrodynamics 39, 147169.Google Scholar
Bozhko, A. A., Putin, G. F., Sidorov, A. S. & Suslov, S. A. 2013 Convection in a vertical layer of stratified magnetic fluid. Magnetohydrodynamics 49, 143152.Google Scholar
Chait, A. & Korpela, S. A. 1989 The secondary flow and its stability for natural convection in a tall vertical enclosure. J. Fluid Mech. 200, 189216.Google Scholar
Charles, S. W. 2002 The Preparation of Magnetic Fluids, vol. 594, pp. 318. Springer.Google Scholar
Finlayson, B. A. 1970 Convective instability of ferromagnetic fluids. J. Fluid Mech. 40, 753767.CrossRefGoogle Scholar
Gershuni, G. Z. & Zhukhovitsky, E. M. 1953 On the stability of plane convective motion of a fluid. Zh. Tekh. Fiz 23, 18381844.Google Scholar
Gershuni, G. Z., Zhukhovitsky, E. M. & Nepomniaschy, A. A. 1989 Stability of Convective Flows. Science, Moscow, Russia, (in Russian).Google Scholar
Gollwitzer, C., Spyropoulos, A. N., Papathanasiou, A. G., Boudouvis, A. G. & Richter, R. 2009 The normal field instability under side-wall effects: comparison of experiments and computations. New J. Phys. 11, 053016.Google Scholar
Groh, Ch., Richter, R., Rehberg, I. & Busse, F. H. 2007 Reorientation of a hexagonal pattern under broken symmetry: The hexagon flip. Phys. Rev. E 76, 055301.Google Scholar
Hennenberg, M., Wessow, B., Slavtchev, S., Desaive, Th. & Scheild, B. 2006 Steady flows of laterally heated ferrofluid layer: influence of inclined strong magnetic field and gravity level. Phys. Fluids 18, 093602.Google Scholar
Kirdyashkin, A. G., Leont’ev, A. I. & Mukhina, N. V. 1971 Stability of a laminar flow of fluid in vertical layers with free convection. Fluid Dyn. 6, 884888.Google Scholar
Mukhopadhyay, A., Ganguly, R., Sen, S. & Puri, I. K. 2005 A scaling analysis to characterize thermomagnetic convection. Intl J. Heat Mass Transfer 48, 34853492.Google Scholar
Odenbach, S. 1995 Microgravity experiments on thermomagnetic convection in magnetic fluids. J. Magn. Magn. Mater. 149, 155157.Google Scholar
Odenbach, S. 2002 Ferrofluids: Magnetically Controllable Fluids and Their Applications. Springer.Google Scholar
Pshenichnikov, A. F. & Ivanov, A. S. 2012 Magnetophoresis of particles and aggregates in concentrated magnetic fluids. Phys. Rev. E 86, 051401.Google Scholar
Rahman, H. & Suslov, S. A. 2015 Thermomagnetic convection in a layer of ferrofluid placed in a uniform oblique external magnetic fluid. J. Fluid Mech. 764, 316348.Google Scholar
Reimann, B., Richter, R., Knieling, H., Friedrichs, R. & Rehberg, I. 2005 Hexagons become the secondary pattern if symmetry is broken. Phys. Rev. E 71, 055202.Google Scholar
Rosensweig, R. E. 1985 Ferrohydrodynamics. Cambridge University Press.Google Scholar
Shliomis, M. I. & Smorodin, B. L. 2002 Convective instability of magnetized ferrofluids. J. Magn. Magn. Mater. 252, 197202.Google Scholar
Sidorov, A. S.2016 The influence of an oblique magnetic field on convection in a vertical layer of magnetic flud. Mygnetohydrodynamics 52 (to appear).Google Scholar
Sprenger, L., Lange, A., Zubarev, A. Yu. & Odenbach, S. 2015 Experimental, numerical, and theoretical investigation on the concentration-dependent Soret effect in magnetic fluids. Phys. Fluids 27, 022001.Google Scholar
Suslov, S. A. 2008 Thermo-magnetic convection in a vertical layer of ferromagnetic fluid. Phys. Fluids 20 (8), 084101.Google Scholar
Suslov, S. A., Bozhko, A. A., Putin, G. F. & Sidorov, A. S. 2010 Interaction of gravitational and magnetic mechanisms of convection in a vertical layer of a magnetic fluid. Phys. Procedia 9, 167170.CrossRefGoogle Scholar
Suslov, S. A., Bozhko, A. A., Sidorov, A. S. & Putin, G. F. 2012 Thermomagnetic convective flows in a vertical layer of ferrocolloid: Perturbation energy analysis and experimental study. Phys. Rev. E 86, 016301.Google Scholar
Suslov, S. A. & Paolucci, S. 1995 Stability of natural convection flow in a tall vertical enclosure under non-Boussinesq conditions. Intl J. Heat Mass Transfer 38, 21432157.CrossRefGoogle Scholar
Wakitani, S. 1996 Formation of cells in natural convection in a vertical slot at large Prandtl number. J. Fluid Mech. 314, 299314.CrossRefGoogle Scholar
Zablotsky, D., Mezulis, A. & Blums, E. 2009 Surface cooling based on thermomagnetic convection: numerical simulation and experiment. Intl J. Heat Mass Transfer 52, 53025308.Google Scholar