Article contents
Manipulation of free shear flows using piezoelectric actuators
Published online by Cambridge University Press: 26 April 2006
Abstract
An air jet emanating from a square conduit having an equivalent diameter of 4.34 cm and a centreline velocity of 4 m/s is forced using four resonantly driven piezoelectric actuators placed along the sides of the square exit. Excitation is effected via amplitude modulation of the resonant carrier waveform. The flow is normally receptive to time–harmonic excitation at the modulating frequency but not at the resonant frequency of the actuators. When the excitation amplitude is high enough, the excitation waveform is demodulated by a nonlinear process that is connected with the formation and coalescence of nominally spanwise vortices in the forced segments of the jet shear layer. As a result, the modulating and carrier wave trains undergo spatial amplification and attenuation, respectively, downstream of the exit plane. Strong instabilities of the jet column are excited when the jet is forced at phase relationships between actuators that correspond (to lowest order) to the azimuthal modes m = 0, ±1, ±2, and −1 of an axisymmetric flow. The streamwise velocity component is measured phase locked to the modulating signal in planes normal to the mean flow. Resonantly driving the actuators with different carrier amplitudes results in a distorted mean flow having a featureless spectrum that can be tailored to provide favourable conditions for the introduction and propagation of desirable low-frequency disturbances.
- Type
- Research Article
- Information
- Copyright
- © 1993 Cambridge University Press
References
- 181
- Cited by