Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T17:08:50.472Z Has data issue: false hasContentIssue false

Manipulation of Richtmyer–Meshkov instability on a heavy–light interface via successive shocks

Published online by Cambridge University Press:  13 January 2025

Zhigang Zhai
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Chenren Chen
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Yinuo Xing
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Jiaxuan Li
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Qing Cao
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
He Wang*
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Xisheng Luo
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China State Key Laboratory of High-Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China
*
Email address for correspondence: ustchewang@ustc.edu.cn

Abstract

The manipulation of the Richtmyer–Meshkov instability growth at a heavy–light interface via successive shocks is theoretically analysed and experimentally realized in a specific shock-tube facility. An analytical model is developed to forecast the interface evolution before and after the second shock impact, and the possibilities for the amplitude evolution pattern are systematically discussed. Based on the model, the parameter conditions for each scenario are designed, and all possibilities are experimentally realized by altering the time interval between two shock impacts. These findings may enhance the understanding of how successive shocks influence hydrodynamic instabilities in practical applications.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bates, J.W. 2004 Initial-value-problem solution for isolated rippled shock fronts in arbitrary fluid media. Phys. Rev. E 69, 056313.CrossRefGoogle ScholarPubMed
Betti, R. & Hurricane, O.A. 2016 Inertial-confinement fusion with lasers. Nat. Phys. 12, 435448.CrossRefGoogle Scholar
Brouillette, M. 2002 The Richtmyer–Meshkov instability. Annu. Rev. Fluid Mech. 34, 445468.CrossRefGoogle Scholar
Charakhch'yan, A.A. 2000 Richtmyer–Meshkov instability of an interface between two media due to passage of two successive shocks. J. Appl. Mech. Tech. Phys. 41, 2331.CrossRefGoogle Scholar
Charakhch'yan, A.A. 2001 Reshocking at the non-linear stage of Richtmyer–Meshkov instability. Plasma Phys. Control. Fusion 43, 11691179.CrossRefGoogle Scholar
Chen, C., Wang, H., Zhai, Z. & Luo, X. 2023 a Attenuation of perturbation growth of single-mode SF$_6$-air interface through reflected rarefaction waves. J. Fluid Mech. 969, R1.CrossRefGoogle Scholar
Chen, C., Xing, Y., Wang, H., Zhai, Z. & Luo, X. 2023 b Freeze-out of perturbation growth of single-mode helium-air interface through reflected shock in Richtmyer–Meshkov flows. J. Fluid Mech. 956, R2.CrossRefGoogle Scholar
Dimonte, G. & Ramaprabhu, P. 2010 Simulations and model of the nonlinear Richtmyer–Meshkov instability. Phys. Fluids 22, 014104.CrossRefGoogle Scholar
Ferguson, K. 2022 The Richtmyer–Meshkov instability in reshock in a dual driver vertical shock tube. PhD thesis, The University of Arizona.Google Scholar
Ferguson, K. & Jacobs, J.W. 2024 The influence of the shock-to-reshock time on the Richtmyer–Meshkov instability in reshock. J. Fluid Mech. 999, A68.CrossRefGoogle Scholar
Guo, X., Cong, Z., Si, T. & Luo, X. 2022 Shock-tube studies of single- and quasi-single-mode perturbation growth in Richtmyer–Meshkov flows with reshock. J. Fluid Mech. 941, A65.CrossRefGoogle Scholar
Ishizaki, R., Nishihara, K., Sakagami, H. & Ueshima, Y. 1996 Instability of a contact surface driven by a nonuniform shock wave. Phys. Rev. E 53, R5592R5595.CrossRefGoogle ScholarPubMed
Kritcher, A.L., et al. 2022 Design of inertial fusion implosions reaching the burning plasma regime. Nat. Phys. 18, 251258.CrossRefGoogle Scholar
Labenski, J.R. 2005 Shock interaction with a two-gas interface in a novel dual-driver shock tube. PhD thesis, Lehigh University.Google Scholar
Leinov, E., Malamud, G., Elbaz, Y., Levin, L.A., Ben-Dor, G., Shvarts, D. & Sadot, O. 2009 Experimental and numerical investigation of the Richtmyer–Meshkov instability under re-shock conditions. J. Fluid Mech. 626, 449475.CrossRefGoogle Scholar
Leinov, E., Sadot, O., Formoza, A., Malamud, G., Elbaz, Y., Levin, L.A., Ben-Dor, G. & Shvarts, D. 2008 Investigation of the Richtmyer–Meshkov instability under re-shock conditions. Phys. Scr. T132, 014014.CrossRefGoogle Scholar
Li, J., Chen, C., Zhai, Z. & Luo, X. 2024 Effects of compressibility on Richtmyer–Meshkov instability of heavy/light interface. Phys. Fluids 36, 056104.CrossRefGoogle Scholar
Liang, Y. & Luo, X. 2023 Review on hydrodynamic instabilities of a shocked gas layer. Sci. China-Phys. Mech. Astron. 66, 104701.CrossRefGoogle Scholar
Liang, Y., Zhai, Z., Luo, X. & Wen, C. 2020 Interfacial instability at a heavy/light interface induced by rarefaction waves. J. Fluid Mech. 885, A42.CrossRefGoogle Scholar
Liu, L., Liang, Y., Ding, J., Liu, N. & Luo, X. 2018 An elaborate experiment on the single-mode Richtmyer–Meshkov instability. J. Fluid Mech. 853, R2.CrossRefGoogle Scholar
Lombardini, M. & Pullin, D.I. 2009 Startup process in the Richtmyer–Meshkov instability. Phys. Fluids 21, 044104.CrossRefGoogle Scholar
Luo, X., Liang, Y., Si, T. & Zhai, Z. 2019 Effects of non-periodic portions of interface on Richtmyer–Meshkov instability. J. Fluid Mech. 861, 309327.CrossRefGoogle Scholar
Merritt, E.C., et al. 2023 Same-sided successive-shock HED instability experiments. Phys. Plasmas 30, 072108.CrossRefGoogle Scholar
Meshkov, E.E. 1969 Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4, 101104.CrossRefGoogle Scholar
Meyer, K.A. & Blewett, P.J. 1972 Numerical investigation of the stability of a shock-accelerated interface between two fluids. Phys. Fluids 15, 753759.CrossRefGoogle Scholar
Mikaelian, K.O. 1985 Richtmyer–Meshkov instabilities in stratified fluids. Phys. Rev. A 31, 410419.CrossRefGoogle ScholarPubMed
Mikaelian, K.O. 2010 Analytic approach to nonlinear hydrodynamic instabilities driven by time-dependent accelerations. Phys. Rev. E 81, 016325.CrossRefGoogle ScholarPubMed
Mirels, H. 1956 Boundary layer behind shock or thin expansion wave moving into stationary fluid. NACA Tech. Rep. TN 3712. NACA.Google Scholar
Mirels, H. 1957 Attenuation in a shock tube due to unsteady-boundary-layer action. NACA Tech. Rep. 1333. NACA.Google Scholar
Mohaghar, M., Carter, J., Pathikonda, G. & Ranjan, D. 2019 The transition to turbulence in shock-driven mixing: effects of Mach number and initial conditions. J. Fluid Mech. 871, 595635.CrossRefGoogle Scholar
Rayleigh, L. 1883 Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. 14, 170177.Google Scholar
Richtmyer, R.D. 1960 Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Maths 13, 297319.CrossRefGoogle Scholar
Sadot, O., Erez, L., Alon, U., Oron, D., Levin, L.A., Erez, G., Ben-Dor, G. & Shvarts, D. 1998 Study of nonlinear evolution of single-mode and two-bubble interaction under Richtmyer–Meshkov instability. Phys. Rev. Lett. 80, 16541657.CrossRefGoogle Scholar
Schill, W.J., et al. 2024 Suppression of Richtmyer–Meshkov instability via special pairs of shocks and phase transitions. Phys. Rev. Lett. 132, 024001.CrossRefGoogle ScholarPubMed
Taylor, G.I. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. Lond. A 201, 192196.Google Scholar
Urzay, J. 2018 Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annu. Rev. Fluid Mech. 50, 593627.CrossRefGoogle Scholar
Vandenboomgaerde, M., Mügler, C. & Gauthier, S. 1998 Impulsive model for the Richtmyer–Meshkov instability. Phys. Rev. E 58, 18741882.CrossRefGoogle Scholar
Wang, H., Cao, Q., Chen, C., Zhai, Z. & Luo, X. 2022 Experimental study on a light-heavy interface evolution induced by two successive shock waves. J. Fluid Mech. 953, A15.CrossRefGoogle Scholar
Wouchuk, J.G. & Nishihara, K. 1997 Asymptotic growth in the linear Richtmyer–Meshkov instability. Phys. Plasmas 4, 10281038.CrossRefGoogle Scholar
Yang, Y., Zhang, Q. & Sharp, D.H. 1994 Small amplitude theory of Richtmyer–Meshkov instability. Phys. Fluids 6, 18561873.CrossRefGoogle Scholar
Zhang, Q. & Guo, W. 2016 Universality of finger growth in two-dimensional Rayleigh–Taylor and Richtmyer–Meshkov instabilities with all density ratios. J. Fluid Mech. 786, 4761.CrossRefGoogle Scholar
Zhou, Y. 2017 a Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep. 720–722, 1136.Google Scholar
Zhou, Y. 2017 b Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep. 723–725, 1160.Google Scholar
Zhou, Y. 2024 Hydrodynamic Instabilities and Turbulence: Rayleigh–Taylor, Richtmyer–Meshkov, and Kelvin–Helmholtz Mixing. Cambridge University Press.CrossRefGoogle Scholar
Zhou, Y., Clark, T.T., Clark, D.S., Glendinning, S.G., Skinner, M.A., Huntington, C.M., Hurricane, O.A., Dimits, A.M. & Remington, B.A. 2019 Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities. Phys. Plasmas 26, 080901.CrossRefGoogle Scholar
Zhou, Y., Sadler, J.D. & Hurricane, O.A. 2025 Instabilities and mixing in inertial confinement fusion. Annu. Rev. Fluid Mech. 57, 197225.Google Scholar
Zhou, Y., et al. 2021 Rayleigh–Taylor and Richtmyer–Meshkov instabilities: a journey through scales. Physica D: Nonlinear Phenom. 423, 132838.CrossRefGoogle Scholar
Zylstra, A.B., et al. 2022 Burning plasma achieved in inertial fusion. Nature 601, 542548.CrossRefGoogle ScholarPubMed