Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T06:37:35.826Z Has data issue: false hasContentIssue false

Measured scaling properties of the transition boundaries in a rotating suspension of non-Brownian settling particles

Published online by Cambridge University Press:  01 February 2008

W. R. MATSON
Affiliation:
Department of Physics, Oklahoma State University, Stillwater, OK 74078, USA
B. J. ACKERSON
Affiliation:
Department of Physics, Oklahoma State University, Stillwater, OK 74078, USA
P. TONG
Affiliation:
Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

Abstract

Series of concentration and velocity patterns are found for the rotating suspension of non-Brownian settling particles in a completely filled horizontal cylinder. Individual flow states, or phases, are studied using both side and cross-sectional imaging to examine the detailed flow structures. The overall steady-state phase diagram of the system is mapped over a wide range of the rotation rate and fluid viscosity. Effects of the particle radius a, volume fraction φ, and cylinder radius R on the transition boundaries are examined. It is found that the phase diagram of the rotating suspensions can be divided into three regions, in which the transition boundaries obey different scaling laws. A theoretical attempt is made to understand the scaling behaviour of the transition boundaries. The theoretical understanding is achieved at three different levels: a general dimensional consideration, a scaling analysis on the continuum equations of motion, and a specific instability calculation for the transition boundary at the centrifugal limit.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boote, O. A. M. & Thomas, P. J. 1999 Phys. Fluids 11, 2020.CrossRefGoogle Scholar
Breu, A. P. J., Kruelle, C. A. & Rehberg, I. 2003 Europhys. Lett. 62, 491.CrossRefGoogle Scholar
Breu, A. P. J., Kruelle, C. A. & Rehberg, I. 2004 Eur. Phys. J. E 13, 189.Google Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability, Chapter X. Dover.Google Scholar
Crowe, C., Sommerfeld, M. & Tsujiet, Y. 1998 Multiphase Flows with Droplets and Particles. CRC, Boca Raton.Google Scholar
Duong, N. P., Husoi, A. E. & Shinbrot, T. 2004 Phys. Rev. Lett. 92, 224502.CrossRefGoogle Scholar
Happel, J. & Brenner, H. 1973 Low Reynolds Number Hydrodynamics, 2nd edn. Kluwer.Google Scholar
Lee, J. & Ladd, J. C. 2002 Phys. Rev. Lett. 89, 104301.CrossRefGoogle Scholar
Lee, J. & Ladd, J. C. 2005 Phys. Rev. Lett. 95, 048001.Google Scholar
Lipson, S. G. 2001 J. Phys.: Condens. Matter 13, 5001.Google Scholar
Lipson, S. G. & Seiden, G. 2002 Physica A 314, 272.CrossRefGoogle Scholar
Matson, W. R. 2004 Doctoral thesis, Oklahoma State University, 2004 (available at http://physics.ust.hk/penger/Matson.pdf).Google Scholar
Matson, W. R., Ackerson, B. J. & Tong, P. 2003 Phys. Rev. E 67, 050301(R).Google Scholar
Matson, W. R., Kalyankar, M., Ackerson, B. J. & Tong, P. 2005 Phys. Rev. E 71, 031401.Google Scholar
Nott, P. R. & Brady, J. F. 1994 J. Fluid Mech. 275, 157.Google Scholar
Raiskinmaki, P., Astrom, J. A., Kataja, M., Latva-Kokko, M., Koponen, A., Jasberg, A., Shakib-Manesh, A. & Timonen, J. 2003 Phys. Rev. E 68, 061403.Google Scholar
Riley, N. 2001 Annu. Rev. Fluid Mech. 33, 43.CrossRefGoogle Scholar
Roberts, G. O., Kornfeld, D. M. & Fowlis, W. W. 1991 J. Fluid Mech. 229, 555.CrossRefGoogle Scholar
Roco, M. C. 1996 Particulate Two-Phase Flow. Butterworth-Heinemann.Google Scholar
Saffman, P. G. 1976 J. Fluid Mech. 73, 593.CrossRefGoogle Scholar
Schaflinger, U. 1996 Flow of Particles in Suspensions. Springer.Google Scholar
Seiden, G., Lipson, S. G. & Franklin, J. 2004 Phys. Rev. E 69, 015301(R).Google Scholar
Seiden, G., Ungarish, M. & Lipson, S. G. 2005 Phys. Rev. E 72, 021407.Google Scholar
Sharp, D. H. 1984 Physica D 12, 3.Google Scholar
Thomas, P. J., Riddell, G. D., Kooner, S. & King, G. P. 2001 Phys. Fluids 13, 2720.CrossRefGoogle Scholar
Thoroddsen, S. T. & Mahadevan, L. 1997 Exps. Fluids 23, 1.CrossRefGoogle Scholar
Timberlake, B. D. & Morris, J. F. 2002 Phys. Fluids 14, 1580.CrossRefGoogle Scholar
Tirumkudulu, M., Mileo, A. & Acrivos, A. 2000 Phys. Fluids 12, 1615.CrossRefGoogle Scholar
Tirumkudulu, M., Tripathi, A. & Acrivos, A. 1999 Phys. Fluids 11, 507.Google Scholar
Tritton, D. J. 1988 Physical Fluid Mechanics, 2nd edn., p. 215. Claredon.Google Scholar
Tsao, H. K. & Koch, D. L. 1995 J. Fluid Mech. 296, 211.CrossRefGoogle Scholar
Ungarish, M. 1993 Hydrodynamics of Suspensions. Springer.CrossRefGoogle Scholar
Voltz, C., Pesch, W. & Rehberg, I. 2001 Phys. Rev. E 65, 011404.Google Scholar
Voth, G. A., Bigger, B., Buckley, M. R., Losert, W., Brenner, M. P., Stone, H. A. & Gollub, J. P. 2002 Phys. Rev. Lett. 88, 234301CrossRefGoogle Scholar
Youngs, D. L. 1984 Physica D 12, 32.Google Scholar
Supplementary material: PDF

Matson supplementary material

Appendix.pdf

Download Matson supplementary material(PDF)
PDF 214.7 KB