Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-30T23:38:34.010Z Has data issue: false hasContentIssue false

Measurements of pressure gradient and temperature gradient driven flows in a rectangular channel

Published online by Cambridge University Press:  02 August 2021

Ricardo Brancher*
Affiliation:
Aix Marseille Université, CNRS, IUSTI UMR 7343, 13453 Marseille, France
Martin Victor Johansson
Affiliation:
Aix Marseille Université, CNRS, IUSTI UMR 7343, 13453 Marseille, France SINTEF Energy Research, PO Box 4761 Torgarden, NO-7465 Trondheim, Norway
Pierre Perrier
Affiliation:
Aix Marseille Université, CNRS, IUSTI UMR 7343, 13453 Marseille, France
Irina Graur
Affiliation:
Aix Marseille Université, CNRS, IUSTI UMR 7343, 13453 Marseille, France
*
Email address for correspondence: ricardo.d.brancher@gmail.com

Abstract

The objective of this experimental investigation is to characterize the gas–surface interaction under different flow conditions. Therefore, the mass flow rates driven by a pressure gradient under isothermal conditions and by only a temperature gradient under constant pressure conditions are measured in the same microchannel for five different gases: helium, neon, nitrogen, argon and krypton. The pressure driven experiments are carried out in the hydrodynamic and slip flow regimes, $0.0016< \text{Knudsen number } (Kn) <0.12$, while the temperature driven experiments in the slip and transitional flow regimes have $0.05< Kn<0.45$. Using a previously developed methodology, the velocity and thermal slip coefficients are derived from the measured mass flow rates. By adopting the classical Maxwell boundary condition, the accommodation coefficients are found to be very different for both types of flows, with a significantly lower value for polyatomic nitrogen in the case of temperature gradient driven flows. An attempt to calculate the tangential momentum and normal energy accommodation coefficients in the frame of the Cercignani–Lampis model was successful only for the tangential momentum accommodation coefficient, which was found to be very close to that derived with the Maxwell model. However, it was not possible to obtain the values of the normal energy accommodation coefficient due to a lack of numerical results which connect the thermal slip and normal energy accommodation coefficients for very low values of the latter.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agrawal, A. & Prabhu, S.V. 2008 Survey on measurement of tangential momentum accommodation coefficient. J. Vac. Sci. Technol. A 26 (4), 634645.CrossRefGoogle Scholar
Albertoni, S., Cercignani, C. & Gotusso, L. 1963 Numerical evaluation of the slip coefficient. Phys. Fluids 6, 993996.CrossRefGoogle Scholar
Alofs, D.J., Flagan, R.C. & Springer, G. 1971 Density distribution measurements in rarefied gases contained between parallel plates at high temperature difference. Phys. Fluids 14 (3), 529533.CrossRefGoogle Scholar
Arkilic, E.B., Schmidt, M.A. & Breuer, K.S. 1997 Gaseous slip flow in long microchannels. J. Microelectromech. Syst. 6 (2), 167178.CrossRefGoogle Scholar
Bird, G.A. 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford Science Publications, Oxford University Press.Google Scholar
Blanchard, D. & Ligrani, P. 2007 Slip and accommodation coefficients from rarefaction and roughness in rotating microscale disk flows. Phys. Fluids 19, 063602.CrossRefGoogle Scholar
Brancher, R.D. 2019 Experimental and numerical analysis of interaction between gas and solid surface. PhD thesis, Aix Marseille Université.Google Scholar
Cercignani, C. 1975 Theory and Application of the Boltzmann Equation. Scottish Academic Press.Google Scholar
Cercignani, C. & Lampis, M. 1971 Kinetic models for gas–surface interactions. Transport Theory Stat. Phys. 1, 101114.CrossRefGoogle Scholar
Colin, S., Lalonde, P. & Caen, R. 2004 Validation of a second-order slip flow model in a rectangular microchannel. Heat Transfer Engng 25 (3), 2330.CrossRefGoogle Scholar
Epstein, M. 1967 A model of the wall boundary condition in kinetic theory. AIAA J. 5, 17971800.CrossRefGoogle Scholar
Ewart, T., Perrier, P., Graur, I.A. & Méolans, J.G. 2006 Mass flow rate measurements in gas micro flows. Exp. Fluids 41 (3), 487498.CrossRefGoogle Scholar
Ewart, T., Perrier, P., Graur, I.A. & Méolans, J.G. 2007 Mass flow rate measurements in microchannel, from hydrodynamic to near free molecular regimes. Fluid Mech. 584, 337356.CrossRefGoogle Scholar
Goodman, F.O. & Wachman, H.Y. 1976 Dynamics of Gas–Surface Scattering. Academic Press.Google Scholar
Graur, I. & Ho, M.T. 2014 Rarefied gas flow through a long rectangular channel of variable cross section. Vacuum 101, 328332.CrossRefGoogle Scholar
Graur, I.A., Méolans, J.G. & Zeitoun, D.E. 2006 Analytical and numerical description for isothermal gas flows in microchannels. Microfluid Nanofluid 2, 6477.CrossRefGoogle Scholar
Graur, I.A., Perrier, P., Ghozlani, W. & Méolans, J.G. 2009 Measurements of tangential momentum accommodation coefficient for various gases in plane microchannel. Phys. Fluids 21, 102004.CrossRefGoogle Scholar
Johansson, M.V., Testa, F., Zaier, I., Perrier, P., Bonnet, J.P., Moulin, P. & Graur, I. 2018 Mass flow rate and permeability measurements in microporous media. Vacuum 158, 7585.CrossRefGoogle Scholar
Klinc, T. & Kuščer, I. 1972 Slip coefficients for general gas surface interaction. Phys. Fluids 15, 10181022.CrossRefGoogle Scholar
Kuščer, I. 1974 Phenomenology of gas–surface accommodation. In Rarefied Gas Dynamics, Proceedings of the Ninth International Symposium (ed. M. Becker & M. Fiebig), vol. 2, p. E.l-1. DFVLR: Porz-Wahn, Germany.Google Scholar
Loyalka, S.K. & Hickey, K.A. 1989 Plane Poiseuille flow: near continuum results for a rigid sphere gas. Physica A 160, 395408.CrossRefGoogle Scholar
Loyalka, S.K., Petrellis, N. & Stvorick, S.T. 1975 Some numerical results for the bgk model: thermal creep and viscous slip problems with arbitrary accommodation of the surface. Phys. Fluids 18, 1094.CrossRefGoogle Scholar
Loyalka, S.K. & Storvick, T.S. 1979 Kinetic theory of thermal transpiration and mechanocaloric effect. III. Flow of a polyatomic gas between parallel plates. J. Chem. Phys. 71, 339.CrossRefGoogle Scholar
Loyalka, S.K., Storvick, T.S. & Lo, S.S. 1982 Thermal transpiration and mechanocaloric effect. IV. Flow of a polyatomic gas in a cylindrical tube. J. Chem. Phys. 76, 4157.CrossRefGoogle Scholar
Maurer, J., Tabeling, P., Joseph, P. & Willaime, H. 2003 Second-order slip laws in microchannels for helium and nitrogen. Phys. Fluids 15, 26132621.CrossRefGoogle Scholar
Maxwell, J.C. 1879 On stress in rarefied gases arising from inequalities of temperature. Phil. Trans. R. Soc. Lond. 170, 231256.Google Scholar
Méolans, J.G. & Graur, I.A. 2008 Continuum analytical modelling of thermal creep. Eur. J. Mech. B/Fluids 27, 785809.CrossRefGoogle Scholar
Méolans, J.G., Nacer, M.H., Rojas, M., Perrier, P. & Graur, I. 2012 Effects of two transversal finite dimensions in long microchannel: analytical approach in slip regime. Phys. Fluids 24, 112005.CrossRefGoogle Scholar
Nguyen, N.N., Graur, I., Perrier, P. & Lorenzani, S. 2020 Variational derivation of thermal slip coefficients on the basis of the Boltzmann equation for hard-sphere molecules and Cercignani–Lampis boundary conditions: comparison with experimental results. Phys. Fluids 32, 102011.CrossRefGoogle Scholar
Perrier, P., Hadj-Nacer, M., Méolans, J.G. & Graur, I. 2019 Measurements and modeling of the gas flow in a microchannel: influence of aspect ratios, surface nature, and roughnesses. Microfluidics Nanofluidics 23 (8), 97.CrossRefGoogle Scholar
Porodnov, B.T., Kulev, A.N. & Tuchvetov, F.T. 1978 Thermal transpiration in a circular capillary with a small temperature difference. J. Fluid Mech. 88, 609622.CrossRefGoogle Scholar
Porodnov, B.T., Suetin, P.E., Borisov, S.F. & Akinshin, V.D. 1974 Experimental investigation of rarefied gas flow in different channels. J. Fluid Mech. 64 (3), 417437.CrossRefGoogle Scholar
Reynolds, O. 1879 On certain dimensional properties of matter in the gaseous state. Philos. Trans. R. Soc. Lond. 170, 727845.Google Scholar
Rojas Cárdenas, M. 2012 Temperature gradient induced rarefied gas flow. PhD thesis, Ecole Doctoral, ED353, Sciences pour l'ingénieur: mécanique, physique, micro et nanoeléctronique, Université Aix Marseille.Google Scholar
Rojas Cardenas, M., Graur, I., Perrier, P. & Méolans, J.G. 2011 Thermal transpiration flow: a circular cross-section microtube submitted to a temperature gradient. Phys. Fluids 23, 031702.CrossRefGoogle Scholar
Rojas Cárdenas, M., Graur, I., Perrier, P. & Méolans, J.G. 2015 A new method to measure the thermal slip coefficient. Intl J. Heat Mass Transfer 88, 766774.CrossRefGoogle Scholar
Rojas-Cardenas, M., Graur, I., Perrier, P. & Méolans, J.G. 2012 An experimental and numerical study of the final zero-flow thermal transpiration stage. J. Therm. Sci. Technol. 7, 437452.CrossRefGoogle Scholar
Rojas-Cardenas, M., Graur, I., Perrier, P. & Méolans, J.G. 2013 Time-dependent experimental analysis of a thermal transpiration rarefied gas flow. Phys. Fluids 25, 072001.CrossRefGoogle Scholar
Rojas-Cárdenas, M., Silva, E., Ho, M.T., Deschamps, C.J. & Graur, I. 2017 Time-dependent methodology for non-stationary mass flow rate measurements in a long micro-tube. Microfluid Nanofluidics 21 (5), 86.CrossRefGoogle Scholar
Saxena, S.C. & Joshi, R.K. 1981 Thermal Accommodation and Adsorption Coefficients of Gases. Hemisphere.Google Scholar
Saxena, S.C. & Joshi, R.K. 1989 Thermal Accommodation and Adsorbtion Coefficients of Gases. Hemisphere Publisjing Corporation.Google Scholar
Sharipov, F. 1999 a Rarefied gas flow through a long rectangular channel. J. Vac. Sci. Technol. A 17 (5), 30623066.CrossRefGoogle Scholar
Sharipov, F. 1999 b Non-isothermal gas flow through rectangular microchannels. J. Micromech. Microengng 9 (4), 394401.CrossRefGoogle Scholar
Sharipov, F. 2003 Application of the Cercignani–Lampis scattering kernel to calculations of rarefied gas flows. III. Poiseuille flow and thermal creep through a long tube. Eur. J. Mech. B/Fluids 22 (2), 145154.CrossRefGoogle Scholar
Sharipov, F. 2011 Data on the velocity slip and temperature jump on a gas–solid interface. J. Phys. Chem. Ref. Data 40 (2), 023101.CrossRefGoogle Scholar
Sharipov, F. 2016 Rarefied Gas Dynamics. Fundamentals for Research and Practice, Wiley-VCH.CrossRefGoogle Scholar
Sharipov, F. & Benites, V. 2020 Transport coefficients of multi-component mixtures of noble gases based on ab initio potentials: viscosity and thermal conductivity. Phys. Fluids 32, 077104.CrossRefGoogle Scholar
Sharipov, F. & Seleznev, V. 1998 Data on internal rarefied gas flows. J. Phys. Chem. Ref. Data 27 (3), 657706.CrossRefGoogle Scholar
Siewert, C.E. 2003 Viscous-slip, thermal-slip and temperature-jump coefficients as defined by the linearized Boltzmann equation and the Cercignani–Lampis boundary condition. Phys. Fluids 15 (6), 16961701.CrossRefGoogle Scholar
Siewert, C.E. & Sharipov, F. 2002 Model equations in rarefied gas dynamics: viscous-slip and thermal-slip coefficients. Phys. Fluids 14 (12), 41234129.CrossRefGoogle Scholar
Struchtrup, H. & Taheri, P. 2011 Microscopic transport models for rarefied gas flows: a brief review. IMA J. Appl. Maths 76 (5), 672697.CrossRefGoogle Scholar
Suetin, P.E. & Chernyak, V.G. 1977 About the dependence of Poiseuille slip and thermal cpeep on interaction law of gaseous moleculs with a boundary surface. Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza 6, 107114. (in Russian).Google Scholar
Teagan, W.P. & Springer, G.S. 1968 Heat-transfer and density-distribution measurments between parallel plates in the transition regime. Phys. Fluids 11 (3), 497506.CrossRefGoogle Scholar
Trott, W.M., neda, J.N.C., Torczynski, J.R., Gallis, M.A. & Rader, D.J. 2011 An experimental assembly for precise measurement of thermal accommodation coefficients. Rev. Sci. Instrum. 82, 0355120.CrossRefGoogle ScholarPubMed
Wu, L. & Struchtrup, H. 2017 Assessement and development of the gas kinetic boundary condition for the Boltzmann equation. J. Fluid Mech. 823 (7), 511537.CrossRefGoogle Scholar
Xiao, X., Rowland, D., Al Chafri, S.Z.S. & May, E.F. 2020 Wide-ranging reference correlations for dilute gas transport properties based on ab initio calculations and viscosity ratio measurements. J. Phys. Chem. Ref. Data 49, 013101.CrossRefGoogle Scholar
Yamaguchi, H., Imai, T., Iwai, T., Kondo, A., Matsuda, Y. & Niimi, T. 2014 a Measurement of thermal accommodation coefficients using a simplified system in a concentric sphere shells configuration. J. Vac. Sci. Technol. A 32 (6), 061602.CrossRefGoogle Scholar
Yamaguchi, H., Perrier, P., Ho, M.T., Méolans, J.G., Niimi, T. & Graur, I. 2016 Mass flow measurement of thermal creep flow from transitional to slip flow regime. J. Fluid Mech. 795, 690707.CrossRefGoogle Scholar
Yamaguchi, H., Rojas-Cardenas, M., Perrier, P., Graur, I. & Niimi, T. 2014 b Thermal transpiration flow through a single rectangular channel. J. Fluid Mech. 744, 169182.CrossRefGoogle Scholar