Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T23:16:44.398Z Has data issue: false hasContentIssue false

Minimal energy thresholds for triggering in the Rijke tube: the effect of the time delay

Published online by Cambridge University Press:  17 March 2022

A. Giannotta*
Affiliation:
Department of Mechanics, Mathematics and Management, Politecnico di Bari, Via Re David 200, 70125Bari, Italy
S. Cherubini
Affiliation:
Department of Mechanics, Mathematics and Management, Politecnico di Bari, Via Re David 200, 70125Bari, Italy
P. De Palma
Affiliation:
Department of Mechanics, Mathematics and Management, Politecnico di Bari, Via Re David 200, 70125Bari, Italy
*
Email address for correspondence: alessandro.giannotta@poliba.it

Abstract

Triggering is the process by which a linearly stable thermoacoustic system can reach self-sustained oscillations. This nonlinear phenomenon is activated only for sufficiently large amplitudes of perturbations to the equilibrium state. In this work, using a nonlinear variational optimisation method coupled with energy bisection, we compute the minimal thresholds for triggering in the Rijke tube. In particular, extending previous works, we take into account the effect of the time delay by optimising not only the perturbations at initial time, but also the velocity at the hot-wire position in the time-delay interval. We found that, for sufficiently large time delays, the nonlinearity linked to the delayed flow velocity bears a strong potential for energy growth, leading to transient amplifications of the energy reaching ${O}(10^{2})$, two orders of magnitude larger than those reported in previous studies. Notably, the gain increases with the time delay, but decreases with the initial energy of the perturbation, thus reaching very high values close to the triggering threshold of the system. The minimal energy for triggering self-sustained oscillations achieves energy values as low as ${O}(10^{-4})$, two orders of magnitude smaller than previous estimates. This indicates that, for thermoacoustic systems characterised by a non-negligible time delay, taking into account the effect of the time-delayed variables, as well as the system nonlinearity, is crucial for correctly evaluating the triggering energy thresholds.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balasubramanian, K. & Sujith, R.I. 2008 a Non-normality and nonlinearity in combustion–acoustic interaction in diffusion flames. J. Fluid Mech. 594, 2957.10.1017/S0022112007008737CrossRefGoogle Scholar
Balasubramanian, K. & Sujith, R.I. 2008 b Thermoacoustic instability in a Rijke tube: nonnormality and nonlinearity. Phys. Fluids 20, 2957.10.1063/1.2895634CrossRefGoogle Scholar
Blumenthal, R.S., Tangirala, A.K., Sujith, R.I. & Polifke, W. 2017 A systems perspective on non-normality in low-order thermoacoustic models: full norms, semi-norms and transient growth. Intl J. Spray Combust. Dyn. 9 (1), 1943.CrossRefGoogle Scholar
Cherubini, S., De Palma, P. & Robinet, J.-C. 2015 Nonlinear optimals in the asymptotic suction boundary layer: transition thresholds and symmetry breaking. Phys. Fluids 27 (3), 034108.CrossRefGoogle Scholar
Cherubini, S., De Palma, P., Robinet, J.-Ch. & Bottaro, A. 2010 a Rapid path to transition via nonlinear localized optimal perturbations in a boundary-layer flow. Phys. Rev. E 82 (6), 066302.CrossRefGoogle Scholar
Cherubini, S., De Palma, P., Robinet, J.-C. & Bottaro, A. 2011 The minimal seed of turbulent transition in the boundary layer. J. Fluid Mech. 689, 221253.CrossRefGoogle Scholar
Cherubini, S., De Palma, P., Robinet, J.-C. & Bottaro, A. 2012 A purely nonlinear route to transition approaching the edge of chaos in a boundary layer. Fluid. Dyn. Res. 44, 031404.10.1088/0169-5983/44/3/031404CrossRefGoogle Scholar
Cherubini, S., De Tullio, M.D., De Palma, P. & Pascazio, G. 2013 Transient growth in the flow past a three-dimensional smooth roughness element. J. Fluid Mech. 724, 642670.10.1017/jfm.2013.177CrossRefGoogle Scholar
Cherubini, S., Robinet, J.-C., Bottaro, A. & De Palma, P. 2010 b Optimal wave packets in a boundary layer and initial phases of a turbulent spot. J. Fluid Mech. 656, 231259.10.1017/S002211201000114XCrossRefGoogle Scholar
Culick, F.E.C. 2006 Unsteady Motions in Combustion Chambers for Propulsion Systems, vol. AG-AVT-039. RTO AGARD-ograph.Google Scholar
Dickinson, L.A. 1962 Command initiation of finite wave axial combustion instability in solid propellant rocket engines. ARS J. 32, 643644.Google Scholar
Dormand, J.R. & Prince, P.J. 1980 A family of embedded Runge–Kutta formulae. J. Comput. Appl. Maths 6 (1), 1926.CrossRefGoogle Scholar
Dowling, A. & Stow, S. 2003 Acoustic analysis of gas turbine combustors. J. Propul. Power 19, 751764.CrossRefGoogle Scholar
Dowling, A.P. 1995 The calculation of thermoacoustic oscillations. J. Sound Vib. 180, 557581.CrossRefGoogle Scholar
Farano, M., Cherubini, S., Robinet, J.-C. & De Palma, P. 2015 Hairpin-like optimal perturbations in plane Poiseuille flow. J. Fluid Mech. 775, R2.10.1017/jfm.2015.320CrossRefGoogle Scholar
Farano, M., Cherubini, S., Robinet, J.-C. & De Palma, P. 2017 Optimal bursts in turbulent channel flow. J. Fluid Mech. 817, 3560.10.1017/jfm.2017.107CrossRefGoogle Scholar
Gotoda, H., Michigami, K., Ikeda, K. & Miyano, T. 2010 Chaotic oscillation in diffusion flame induced by radiative heat loss. Combust. Theory Model. 14 (4), 479493.10.1080/13647830.2010.493223CrossRefGoogle Scholar
Gotoda, H., Nikimoto, H., Miyano, T. & Tachibana, S. 2011 Dynamic properties of combustion instability in a lean premixed gas-turbine combustor. Chaos 21 (1), 013124.CrossRefGoogle Scholar
Hantschk, C.C. & Vortmeyer, D. 1999 Numerical simulation of self-excited thermo-acoustic instabilities in a Rijke tube. J. Sound Vib. 227, 511522.10.1006/jsvi.1999.2296CrossRefGoogle Scholar
Heckl, M.A. 1990 Non-linear acoustic effects in the Rijke tube. Acta Acust. United Ac. 72 (1), 6371.Google Scholar
Heckl, M.A. & Howe, M.S. 2007 Stability analysis of the Rijke tube with a Green's function approach. J. Sound Vib. 305 (4–5), 672688.CrossRefGoogle Scholar
Jagadesan, V. & Sujith, R.I. 2012 Experimental investigation of noise induced triggering in thermoacoustic systems. Proc. Combust. Inst. 34, 31753183.10.1016/j.proci.2012.05.003CrossRefGoogle Scholar
Jarlebring, E. 2008 Spectrum of delay-differential equations: the numerical methods, stability and perturbation. PhD thesis, TU Braunschweig.Google Scholar
Juniper, M.P. 2011 Triggering in the horizontal Rijke tube: non-normality, transient growth and bypass transition. J. Fluid Mech. 667, 272308.10.1017/S0022112010004453CrossRefGoogle Scholar
Juniper, M.P. 2012 Triggering in thermoacoustics. Intl J. Spray Combust. Dyn. 4 (3), 217237.CrossRefGoogle Scholar
Kabiraj, L., Saurabh, A., Wahi, P. & Sujith, R.I. 2012 Route to chaos for combustion instability in ducted laminar premixed flames. Chaos 22 (2), 023129.CrossRefGoogle ScholarPubMed
Kerswell, R.R. 2018 Nonlinear nonmodal stability theory. Annu. Rev. Fluid Mech. 50 (1), 319345.10.1146/annurev-fluid-122316-045042CrossRefGoogle Scholar
Kerswell, R.R., Pringle, C.C.T. & Willis, A.P. 2014 An optimization approach for analysing nonlinear stability with transition to turbulence in fluids as an exemplar. Rep. Prog. Phys. 77 (8), 085901.10.1088/0034-4885/77/8/085901CrossRefGoogle ScholarPubMed
Lei, S. & Turan, A. 2009 Nonlinear/chaotic behaviour in thermo-acoustic instability. Combust. Theory Model. 13 (3), 541557.10.1080/13647830902957218CrossRefGoogle Scholar
Lele, S.K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103 (1), 1642.CrossRefGoogle Scholar
Lieuwen, T. & Zinn, B.T. 1998 The role of equivalence ratio oscillations in driving combustion instabilities in low $\textrm {NO}_x$ gas turbines. Proc. Combust. Inst. 39, 18091816.CrossRefGoogle Scholar
Lieuwen, T.C. & Yang, V. 2005 Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling, vol. 210. American Institute of Aeronautics and Astronautics.Google Scholar
Luchini, P. 2000 Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations. J. Fluid Mech. 404, 289309.10.1017/S0022112099007259CrossRefGoogle Scholar
Luchini, P. & Bottaro, A. 2014 Adjoint equations in stability analysis. Annu. Rev. Fluid Mech. 46 (1), 493517.10.1146/annurev-fluid-010313-141253CrossRefGoogle Scholar
Magri, L., Balasubramanian, K., Sujith, R.I. & Juniper, M.P. 2013 Non-normality in combustion–acoustic interaction in diffusion flames: a critical revision. J. Fluid Mech. 733, 681683.10.1017/jfm.2013.468CrossRefGoogle Scholar
Mariappan, S. & Sujith, R.I. 2011 Modelling nonlinear thermo-acoustic instability in an electrically heated Rijke tube. J. Fluid Mech. 680, 511533.10.1017/jfm.2011.176CrossRefGoogle Scholar
Mariappan, S., Sujith, R.I. & Schmid, P.J. 2015 Experimental investigation of non-normality of thermoacoustic interaction in an electrically heated Rijke tube. Intl J. Spray Combust. Dyn. 7 (4), 315352.10.1260/1756-8277.7.4.315CrossRefGoogle Scholar
Matveev, K.I. & Culick, F.E.C. 2003 A study of the transition to the instability in a Rijke tube with axial temperature gradient. J. Sound Vib. 264, 689706.CrossRefGoogle Scholar
Matveev, K.I. & Culick, F.E.C. 2003 A model for combustion instability involving vortex shedding. Combust. Sci. Technol. 175 (6), 10591083.10.1080/00102200302349CrossRefGoogle Scholar
Mitchell, C.E., Crocco, L. & Sirignano, W.A. 1969 Nonlinear longitudinal instability in rocket motors with concentrated combustion. Combust. Sci. Technol. 1, 3564.CrossRefGoogle Scholar
Nicoud, F., Benoit, L. & Sensiau, C. 2007 Acoustic modes in combustors with complex impedances and multidimensional active flames. AIAA J. 45, 426441.10.2514/1.24933CrossRefGoogle Scholar
Orchini, A., Rigas, G. & Juniper, M.P. 2016 Weakly nonlinear analysis of thermoacoustic bifurcations in the Rijke tube. J. Fluid Mech. 805, 523550.10.1017/jfm.2016.585CrossRefGoogle Scholar
Pringle, C.C.T. & Kerswell, R.R. 2010 Using nonlinear transient growth to construct the minimal seed for shear flow turbulence. Phys. Rev. Lett. 105, 154502.10.1103/PhysRevLett.105.154502CrossRefGoogle ScholarPubMed
Rabin, S.M.E., Caulfield, C.P. & Kerswell, R.R. 2012 Triggering turbulence efficiently in plane Couette flow. J. Fluid Mech. 712, 244272.CrossRefGoogle Scholar
Rayleigh, Lord 1878 The explanation of certain acoustical phenomena. Nature 18, 319321.10.1038/018319a0CrossRefGoogle Scholar
Rijke, P.L. 1859 Notice of a new method of causing a vibration of the air contained in a tube open at both ends. Lond. Edinb. Dublin Philos. Mag. J. Sci. 17 (116), 419422.10.1080/14786445908642701CrossRefGoogle Scholar
Sayadi, T., Le Chenadec, V., Schmid, P.J., Richecoeur, F. & Massot, M. 2014 Thermoacoustic instability – a dynamical system and time domain analysis. J. Fluid Mech. 753, 448471.CrossRefGoogle Scholar
Schmid, P.J. & Henningson, D.S. 2012 Stability and Transition in Shear Flows, vol. 142. Springer.Google Scholar
Sogaro, F.M., Schmid, P.J. & Morgans, A.S. 2019 Thermoacoustic interplay between intrinsic thermoacoustic and acoustic modes: non-normality and high sensitivities. J. Fluid Mech. 878, 190220.CrossRefGoogle Scholar
Sterling, J.D. & Zukoski, E.E. 1991 Nonlinear dynamics of laboratory combustor pressure oscillations. Combust. Sci. Technol. 77 (4–6), 225238.CrossRefGoogle Scholar
Strogatz, S.H. 2018 Nonlinear Dynamics and Chaos with Student Solutions Manual: with Applications to Physics, Biology, Chemistry, and Engineering. CRC.10.1201/9780429399640CrossRefGoogle Scholar
Sujith, R.I., Juniper, M.P. & Schmid, P.J. 2016 Non-normality and nonlinearity in thermoacoustic instabilities. Intl J. Spray Combust. Dyn. 8 (2), 119146.10.1177/1756827716651571CrossRefGoogle Scholar
Sujith, R.I. & Unni, V.R. 2020 Complex system approach to investigate and mitigate thermoacoustic instability in turbulent combustors. Phys. Fluids 32, 061401.CrossRefGoogle Scholar
Trefethen, L.N., Trefethen, A.E., Reddy, S.C. & Driscoll, T.A. 1993 Hydrodynamic stability without eigenvalues. Science 261 (5121), 578584.CrossRefGoogle ScholarPubMed
Waugh, I.C. & Juniper, M.P. 2011 Triggering in a thermoacoustic system with stochastic noise transition. Intl J. Spray Combust. Dyn. 3, 225242.CrossRefGoogle Scholar
Wicker, J.M., Greene, W.D., Kim, S.-I. & Yang, V. 1996 Triggering of longitudinal combustion instabilities in rocket motors – nonlinear combustion response. J. Propul. Power 12 (6), 11481158.10.2514/3.24155CrossRefGoogle Scholar
Zhao, D. 2012 Transient growth of flow disturbances in triggering a Rijke tube combustion instability. Combust. Flame 159, 21262137.10.1016/j.combustflame.2012.02.002CrossRefGoogle Scholar