Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-14T06:25:59.878Z Has data issue: false hasContentIssue false

Model-based design of riblets for turbulent drag reduction

Published online by Cambridge University Press:  10 November 2020

Wei Ran
Affiliation:
Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA90089, USA
Armin Zare
Affiliation:
Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX75080, USA
Mihailo R. Jovanović*
Affiliation:
Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA90089, USA
*
Email address for correspondence: mihailo@usc.edu

Abstract

Both experiments and direct numerical simulations have been used to demonstrate that riblets can reduce turbulent drag by as much as $10\,\%$, but their systematic design remains an open challenge. In this paper we develop a model-based framework to quantify the effect of streamwise-aligned spanwise-periodic riblets on kinetic energy and skin-friction drag in turbulent channel flow. We model the effect of riblets as a volume penalization in the Navier–Stokes equations and use the statistical response of the eddy-viscosity-enhanced linearized equations to quantify the effect of background turbulence on the mean velocity and skin-friction drag. For triangular riblets, our simulation-free approach reliably predicts drag-reducing trends as well as mechanisms that lead to performance deterioration for large riblets. We investigate the effect of height and spacing on drag reduction and demonstrate a correlation between energy suppression and drag reduction for appropriately sized riblets. We also analyse the effect of riblets on drag-reduction mechanisms and turbulent flow structures including very large-scale motions. Our results demonstrate the utility of our approach in capturing the effect of riblets on turbulent flows using models that are tractable for analysis and optimization.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aurentz, J. L. & Trefethen, L. N. 2017 Block operators and spectral discretizations. SIAM Rev. 59 (2), 423446.CrossRefGoogle Scholar
Bakewell, H. P. & Lumley, J. L. 1967 Viscous sublayer and adjacent wall region in turbulent pipe flow. Phys. Fluids 10 (9), 18801889.CrossRefGoogle Scholar
Bamieh, B. & Dahleh, M. 2001 Energy amplification in channel flows with stochastic excitation. Phys. Fluids 13 (11), 32583269.CrossRefGoogle Scholar
Bandyopadhyay, P. R. & Hellum, A. M. 2014 Modeling how shark and dolphin skin patterns control transitional wall-turbulence vorticity patterns using spatiotemporal phase reset mechanisms. Sci. Rep. 4, 6650.CrossRefGoogle ScholarPubMed
Bechert, D. W. & Bartenwerfer, M. 1989 The viscous flow on surfaces with longitudinal ribs. J. Fluid Mech. 206, 105129.Google Scholar
Bechert, D. W., Bruse, M. & Hage, W. 2000 Experiments with three-dimensional riblets as an idealized model of shark skin. Exp. Fluids 28 (5), 403412.CrossRefGoogle Scholar
Bechert, D. W., Bruse, M., Hage, W., Van der Hoeven, J. G. T. & Hoppe, G. 1997 Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J. Fluid Mech. 338, 5987.CrossRefGoogle Scholar
Benjanuvatra, N., Dawson, G., Blanksby, B. A. & Elliott, B. C. 2002 Comparison of buoyancy, passive and net active drag forces between Fastskin and standard swimsuits. J. Sci. Med. Sport 5 (2), 115123.CrossRefGoogle ScholarPubMed
Bensoussan, A., Lions, J. L. & Papanicolaou, G. 1978 Asymptotic Analysis for Periodic Structures. North Holland.Google Scholar
Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A 4, 16371650.CrossRefGoogle Scholar
Cess, R. D. 1958 A survey of the literature on heat transfer in turbulent tube flow. Rep. 8-0529-R24. Westinghouse Research.Google Scholar
Chavarin, A. & Luhar, M. 2019 Resolvent analysis for turbulent channel flow with riblets. AIAA J. 58, 111.Google Scholar
Choi, H., Moin, P. & Kim, J. 1993 Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech. 255, 503539.Google Scholar
Coustols, E. & Savill, A. M. 1989 Résumé of important results presented at the third turbulent drag reduction working party. Appl. Sci. Res. 46 (3), 183196.CrossRefGoogle Scholar
Dean, B. & Bhushan, B. 2010 Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review. Phil. Trans. R. Soc. A 368 (1929), 47754806.CrossRefGoogle ScholarPubMed
Del Álamo, J. C. & Jiménez, J. 2003 Spectra of the very large anisotropic scales in turbulent channels. Phys. Fluids 15 (6), 4144.CrossRefGoogle Scholar
Del Álamo, J. C., Jiménez, J., Zandonade, P. & Moser, R. D. 2004 Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500 (1), 135144.Google Scholar
Fardad, M., Jovanovic, M. R. & Bamieh, B. 2008 Frequency analysis and norms of distributed spatially periodic systems. IEEE Trans. Autom. Control 53 (10), 22662279.CrossRefGoogle Scholar
Farrell, B. F. & Ioannou, P. J. 1993 Stochastic forcing of the linearized Navier–Stokes equations. Phys. Fluids A 5 (11), 26002609.CrossRefGoogle Scholar
Gad-el Hak, M. 2000 Flow Control: Passive, Active, and Reactive Flow Management. Cambridge University Press.Google Scholar
García-Mayoral, R. & Jiménez, J. 2011 a Drag reduction by riblets. Phil. Trans. R. Soc. A 369 (1940), 14121427.CrossRefGoogle ScholarPubMed
García-Mayoral, R. & Jiménez, J. 2011 b Hydrodynamic stability and breakdown of the viscous regime over riblets. J. Fluid Mech. 678, 317347.Google Scholar
García-Mayoral, R., de Segura, G. & Fairhall, C. T. 2019 The control of near-wall turbulence through surface texturing. Fluid Dyn. Res. 51 (1), 011410.CrossRefGoogle Scholar
Goldstein, D. B. & Tuan, T.-C. 1998 Secondary flow induced by riblets. J. Fluid Mech. 363, 115151.Google Scholar
Hamilton, J. M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.Google Scholar
Hwang, Y. & Cossu, C. 2010 Linear non-normal energy amplification of harmonic and stochastic forcing in the turbulent channel flow. J. Fluid Mech. 664, 5173.Google Scholar
Ibrahim, J. I., de Segura, G. G. & García-Mayoral, R. 2019 A unified approach to the study of turbulence over smooth and drag-reducing surfaces. In 11th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2019.Google Scholar
Jiménez, J. & Pinelli, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335359.CrossRefGoogle Scholar
Jones, W. P. & Launder, B. E. 1972 The prediction of laminarization with a two-equation model of turbulence. Intl J. Heat Mass Transfer 15 (2), 301314.CrossRefGoogle Scholar
Jovanovic, M. R. 2004 Modeling, analysis, and control of spatially distributed systems. PhD thesis, University of California, Santa Barbara.Google Scholar
Jovanovic, M. R. 2008 Turbulence suppression in channel flows by small amplitude transverse wall oscillations. Phys. Fluids 20 (1), 014101 (11 pages).CrossRefGoogle Scholar
Jovanovic, M. R. 2021 From bypass transition to flow control and data-driven turbulence modeling: an input-output viewpoint. Annu. Rev. Fluid Mech. https://doi.org/10.1146/annurev-fluid-010719-060244.CrossRefGoogle Scholar
Jovanovic, M. R. & Bamieh, B. 2005 Componentwise energy amplification in channel flows. J. Fluid Mech. 534, 145183.CrossRefGoogle Scholar
Kasliwal, A., Duncan, S. & Papachristodoulou, A. 2012 Modelling channel flow over riblets: calculating the energy amplification. In Proceedings of 2012 UKACC International Conference on Control, pp. 625–630. IEEE.CrossRefGoogle Scholar
Khadra, K., Angot, P., Parneix, S. & Caltagirone, J. 2000 Fictitious domain approach for numerical modelling of Navier–Stokes equations. Intl J. Numer. Meth. Fluids 34 (8), 651684.3.0.CO;2-D>CrossRefGoogle Scholar
Kim, J. & Bewley, T. R. 2007 A linear systems approach to flow control. Annu. Rev. Fluid Mech. 39, 383417.CrossRefGoogle Scholar
Launder, B. E. & Sharma, B. I. 1974 Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Transfer 1, 131137.CrossRefGoogle Scholar
Lee, S. J. & Lee, S. -H. 2001 Flow field analysis of a turbulent boundary layer over a riblet surface. Exp. Fluids 30 (2), 153166.CrossRefGoogle Scholar
Lieu, B. K., Moarref, R. & Jovanovic, M. R. 2010 Controlling the onset of turbulence by streamwise traveling waves. Part 2: direct numerical simulations. J. Fluid Mech. 663, 100119.Google Scholar
Luchini, P., Manzo, F. & Pozzi, A. 1991 Resistance of a grooved surface to parallel flow and cross-flow. J. Fluid Mech. 228, 87109.Google Scholar
Luhar, M., Sharma, A. S. & McKeon, B. J. 2014 Opposition control within the resolvent analysis framework. J. Fluid Mech. 749, 597626.CrossRefGoogle Scholar
Malkus, W. V. R. 1956 Outline of a theory of turbulent shear flow. J. Fluid Mech. 1 (5), 521539.CrossRefGoogle Scholar
Marusic, I., McKeon, B. J., Monkewitz, P. A., Nagib, H. M., Smits, A. J. & Sreenivasan, K. R. 2010 Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22 (6), 065103.Google Scholar
Marusic, I., Monty, J. P., Hultmark, M. & Smits, A. J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3.CrossRefGoogle Scholar
McComb, W. D. 1991 The Physics of Fluid Turbulence. Oxford University Press.Google Scholar
McKeon, B. J. & Sharma, A. S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.CrossRefGoogle Scholar
Moarref, R. & Jovanovic, M. R. 2010 Controlling the onset of turbulence by streamwise traveling waves. Part 1: receptivity analysis. J. Fluid Mech. 663, 7099.CrossRefGoogle Scholar
Moarref, R. & Jovanovic, M. R. 2012 Model-based design of transverse wall oscillations for turbulent drag reduction. J. Fluid Mech. 707, 205240.CrossRefGoogle Scholar
Moin, Parviz & Moser, R. D. 1989 Characteristic-eddy decomposition of turbulence in a channel. J. Fluid Mech. 200 (41), 509.CrossRefGoogle Scholar
Mollendorf, J. C., Termin, A. C. II, Oppenheim, E. & Pendergast, D. R. 2004 Effect of swim suit design on passive drag. Med. Sci. Sports Exer. 36 (6), 10291035.Google ScholarPubMed
Monty, J. P., Stewart, J. A., Williams, R. C. & Chong, M. S. 2007 Large-scale features in turbulent pipe and channel flows. J. Fluid Mech. 589, 147156.Google Scholar
Odeh, F. & Keller, J. B. 1964 Partial differential equations with periodic coefficients and Bloch waves in crystals. J. Math. Phys. 5, 14991504.CrossRefGoogle Scholar
Orlandi, P. & Leonardi, S. 2006 DNS of turbulent channel flows with two- and three-dimensional roughness. J. Turbul. 7, 122.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Ran, W., Zare, A., Hack, M. J. P. & Jovanovic, M. R. 2019 Stochastic receptivity analysis of boundary layer flow. Phys. Rev. Fluids 4 (9), 093901.CrossRefGoogle Scholar
Reynolds, W. C. & Tiederman, W. G. 1967 Stability of turbulent channel flow with application to Malkus's theory. J. Fluid Mech. 27 (2), 253272.CrossRefGoogle Scholar
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23 (1), 601639.CrossRefGoogle Scholar
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer.Google Scholar
Schultz, M. P., Bendick, J. A., Holm, E. R. & Hertel, W. M. 2011 Economic impact of biofouling on a naval surface ship. Biofouling 27 (1), 8798.CrossRefGoogle ScholarPubMed
Sirovich, L. & Karlsson, S. 1997 Turbulent drag reduction by passive mechanisms. Nature 388 (6644), 753.CrossRefGoogle Scholar
Suzuki, Y. & Kasagi, N. 1994 Turbulent drag reduction mechanism above a riblet surface. AIAA J. 32 (9), 17811790.CrossRefGoogle Scholar
Szodruch, J. 1991 Viscous drag reduction on transport aircraft. AIAA Paper 91-0685.CrossRefGoogle Scholar
Toedtli, S. S., Luhar, M. & McKeon, B. J. 2019 Predicting the response of turbulent channel flow to varying-phase opposition control: resolvent analysis as a tool for flow control design. Phys. Rev. Fluids 4 (7), 073905.Google Scholar
Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability without eigenvalues. Science 261, 578584.CrossRefGoogle ScholarPubMed
Walsh, M. 1982 Turbulent boundary layer drag reduction using riblets. In 20th Aerospace Sciences Meeting, p. 169. AIAA.Google Scholar
Walsh, M. & Lindemann, A. 1984 Optimization and application of riblets for turbulent drag reduction. In 22nd Aerospace Sciences Meeting, p. 347. AIAA.Google Scholar
Weideman, J. A. C. & Reddy, S. C. 2000 A MATLAB differentiation matrix suite. ACM Trans. Math. Softw. 26 (4), 465519.CrossRefGoogle Scholar
Yusim, A. K. & Utama, I. K. A. P. 2017 An investigation into the drag increase on roughen surface due to marine fouling growth. IPTEK J. Technol. Sci. 28 (3).CrossRefGoogle Scholar
Zare, A., Chen, Y., Jovanovic, M. R. & Georgiou, T. T. 2017 a Low-complexity modeling of partially available second-order statistics: theory and an efficient matrix completion algorithm. IEEE Trans. Autom. Control 62 (3), 13681383.CrossRefGoogle Scholar
Zare, A., Georgiou, T. T. & Jovanovic, M. R. 2020 Stochastic dynamical modeling of turbulent flows. Annu. Rev. Control Robot. Auton. Syst. 3, 195219.CrossRefGoogle Scholar
Zare, A., Jovanovic, M. R. & Georgiou, T. T. 2016 Perturbation of system dynamics and the covariance completion problem. In Proceedings of the 55th IEEE Conference on Decision and Control, pp. 7036–7041. IEEE.CrossRefGoogle Scholar
Zare, A., Jovanovic, M. R. & Georgiou, T. T. 2017 b Colour of turbulence. J. Fluid Mech. 812, 636680.CrossRefGoogle Scholar