Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T06:49:40.483Z Has data issue: false hasContentIssue false

Modelling the breakup of solid aggregates in turbulent flows

Published online by Cambridge University Press:  10 October 2008

MATTHÄUS U. BÄBLER
Affiliation:
Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerlandmassimo.morbidelli@chem.ethz.ch
MASSIMO MORBIDELLI
Affiliation:
Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerlandmassimo.morbidelli@chem.ethz.ch
JERZY BAŁDYGA
Affiliation:
Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryǹskiego 1, PL 00-645 Warsaw, Poland

Abstract

The breakup of solid aggregates suspended in a turbulent flow is considered. The aggregates are assumed to be small with respect to the Kolmogorov length scale and the flow is assumed to be homogeneous. Further, it is assumed that breakup is caused by hydrodynamic stresses acting on the aggregates, and breakup is therefore assumed to follow a first-order kinetic where KB(x) is the breakup rate function and x is the aggregate mass. To model KB(x), it is assumed that an aggregate breaks instantaneously when the surrounding flow is violent enough to create a hydrodynamic stress that exceeds a critical value required to break the aggregate. For aggregates smaller than the Kolmogorov length scale the hydrodynamic stress is determined by the viscosity and local energy dissipation rate whose fluctuations are highly intermittent. Hence, the first-order breakup kinetics are governed by the frequency with which the local energy dissipation rate exceeds a critical value (that corresponds to the critical stress). A multifractal model is adopted to describe the statistical properties of the local energy dissipation rate, and a power-law relation is used to relate the critical energy dissipation rate above which breakup occurs to the aggregate mass. The model leads to an expression for KB(x) that is zero below a limiting aggregate mass, and diverges for x → ∞. When simulating the breakup process, the former leads to an asymptotic mean aggregate size whose scaling with the mean energy dissipation rate differs by one third from the scaling expected in a non-fluctuating flow.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adler, P. M. & Mills, P. M. 1979 Motion and rupture of a porous sphere in a linear flow field. J. Rheol. 23, 2537.CrossRefGoogle Scholar
Bäbler, M. U. 2007 Modelling of aggregation and breakage of colloidal aggregates in turbulent flows. PhD Thesis, ETH Zürich.Google Scholar
Bäbler, M. U. 2008 A collision efficiency model for flow-induced coagulation of fractal aggregates. AIChE J. 54, 17481760.CrossRefGoogle Scholar
Bäbler, M. U. & Morbidelli, M. 2007 Analysis of the aggregation–fragmentation population balance equation with application to coagulation. J. Colloid Interface Sci. 316, 428441.CrossRefGoogle ScholarPubMed
Bäbler, M. U., Sefcik, J., Morbidelli, M. & Bałdyga, J. 2006 Hydrodynamic interactions and orthokinetic collisions of porous aggregates in the Stokes regime. Phys. Fluids 18, 013302.CrossRefGoogle Scholar
Bałdyga, J. & Bourne, J. R. 1995 Interpretation of turbulent mixing using fractals and multifractals. Chem. Engng Sci. 50, 381400.CrossRefGoogle Scholar
Bałdyga, J. & Podgórska, W. 1998 Drop break-up in intermittent turbulence: maximum stable and transient sizes of drops. Can. J. Chem. Engng 76, 456470.CrossRefGoogle Scholar
Batchelor, G. K. & Green, J. T. 1972 The hydrodynamic interaction of two small freely-moving spheres in a linear flow field. J. Fluid Mech. 56, 375400.CrossRefGoogle Scholar
Batchelor, G. K. & Townsend, A. A. 1949 The nature of turbulent motion at large wave-numbers. Proc. R. Soc. Lond. A 199, 238255.Google Scholar
Biferale, L., Boffetta, G., Celani, A., Lanotte, A. & Toschi, F. 2005 Particle trapping in three dimensional fully developed turbulence. Phys. Fluids 17, 021701.CrossRefGoogle Scholar
Biferale, L. & Toschi, F. 2005 Joint statistics of acceleration and vorticity in fully developed turbulence. J. Turbulence 6, 40.CrossRefGoogle Scholar
Blaser, S. 2000 Break-up of flocs in conctraction and swirling flows. Colloids Surf. A 166, 215223.CrossRefGoogle Scholar
Borgas, M. S. 1993 The multifractal Lagrangian nature of turbulence. Phil. Trans. R. Soc. Lond. A 342, 379411.Google Scholar
Brakalov, L. B. 1987 A connection between the orthokinetic coagulation capture efficiency of aggregates and their maximum size. Chem. Engng Sci. 42, 23732383.CrossRefGoogle Scholar
Castaing, B., Gagne, Y. & Hopfinger, E. J. 1990 Velocity probability density functions of high Reynolds number turbulence. Physica D 46, 177200.Google Scholar
Coufort, C., Bouyer, D. & Liné, A. 2005 Flocculation related to local hydrodynamics in a Taylor-Couette reactor and in a jar. Chem. Engng Sci. 60, 21792192.CrossRefGoogle Scholar
Delichatsios, M. A. 1975 Model for the breakage rate of spherical drops in isotropic turbulent flows. Phys. Fluids 18, 622623.CrossRefGoogle Scholar
Delichatsios, M. A. & Probstein, R. F. 1976 The effect of coalescence on the average drop size in liquid–liquid dispersions. Ind. Engng Chem. Fundam. 15, 134138.CrossRefGoogle Scholar
Flesch, J. C., Spicer, P. T. & Pratsinis, S. E. 1999 Laminar and turbulent shear-induced flocculation of fractal aggregates. AIChE J. 45, 11141124.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence. Cambidge University Press.CrossRefGoogle Scholar
Frisch, U., Sulem, P. L. & Nelkin, M. 1978 A Simple dynamical model of intermittent fully developed turbulence. J. Fluid Mech. 87, 719736.CrossRefGoogle Scholar
Gotoh, T., Fukayama, D. & Nakano, T. 2002 Velocity field statistics in homogeneous steady turbulence obtained using a high resolution direct numerical simulation. Phys. Fluids 14, 10651081.CrossRefGoogle Scholar
Harada, S., Tanaka, R., Nogami, H. & Sawada, M. 2006 Dependence of fragmentation behavior of colloidal aggregates on their fractal structure. J. Colloid Interface Sci. 301, 123129.CrossRefGoogle ScholarPubMed
Higashitani, K., Iimura, K. & Sanda, H. 2001 Simulation of deformation and breakage of large aggregates in flows of viscous fluids. Chem. Engng Sci. 56, 29272938.CrossRefGoogle Scholar
Hinze, J. O. 1975 Turbulence, 2nd Edn.McGraw-Hill.Google Scholar
Horwatt, S. W., Feke, D. L. & Manas-Zloczower, I. 1992 a The influence of structural heterogeneities on the cohesivity and breakage of agglomerates in simple shear flow. Powder Tech. 72, 113119.CrossRefGoogle Scholar
Horwatt, S. W., Manas-Zloczower, I. & Feke, D. L. 1992 b Dispersion behavior of heterogeneous agglomerates at supercritcal stress. Chem. Engng Sci. 47, 18491855.CrossRefGoogle Scholar
Joseph, G. G., Zenit, R., Hunt, M. L. & Rosenwinkel, A. M. 2001 Particle–wall collisions in a viscous fluid. J. Fluid Mech. 433, 329346.CrossRefGoogle Scholar
Kailasnath, P., Sreenivasan, K. R. & Stolovitzky, G. 1992 Probability density of velocity increments in turbulent flows. Phys. Rev. Lett. 68, 27662769.CrossRefGoogle ScholarPubMed
Kobayashi, M., Adachi, Y. & Ooi, S. 1999 breakage of fractal flocs in a turbulent flow. Langmuir 15, 43514356.CrossRefGoogle Scholar
Kolmogorov, A. N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynols number. J. Fluid Mech. 13, 8285.CrossRefGoogle Scholar
Kusters, K. A. 1991 The influence of turbulence on aggregation of small particles in agitated vessels. PhD Thesis, Technische Universiteit Eindhoven.Google Scholar
Kusters, K. A., Wijers, J. G. & Thoenes, D. 1997 Aggregation kinetics of small particles in agitated vessels. Chem. Engng Sci. 52, 107121.CrossRefGoogle Scholar
La Porta, A., Voth, G. A., Crawford, A. M., Alexander, J. & Bodenschatz, E. 2001 Fluid particle accelerations in fully developed turbulence. Nature 409, 10171019.CrossRefGoogle ScholarPubMed
Lasheras, J. C., Eastwood, C., Martínez-Bazán, C. & Montañés, J. L. 2002 A review of statistical models for the break-up of an immiscible fluid immersed into a fully developed turbulent flow. Intl J. Multiphase Flow 28, 247278.CrossRefGoogle Scholar
Lattuada, M., Sandkühler, P., Wu, H., Sefcik, J. & Morbidelli, M. 2003 Aggregation kinetics of polymer colloids in reaction limited regime: experiments and simulations. Adv. Colloid Interface Sci. 103, 3356.CrossRefGoogle ScholarPubMed
Lin, M. Y., Lindsay, H. M., Weitz, D. A., Ball, R. C., Klein, R. & Meakin, P. 1989 Universality in colloid aggregation. Nature 339, 360362.CrossRefGoogle Scholar
Luo, H. & Svendson, F. 1996 Theoretical model for drop and bubble break-up in turbulent dispersions. AIChE J. 42, 12251233.CrossRefGoogle Scholar
Meneveau, C. & Sreenivasan, K. R. 1987 Simple multifractal cascade model for fully developed turbulence. Phys. Rev. Lett. 59, 14241427.CrossRefGoogle ScholarPubMed
Meneveau, C. & Sreenivasan, K. R. 1991 The multifractal nature of turbulent energy dissipation. J. Fluid Mech. 224, 429484.CrossRefGoogle Scholar
Moussa, A. S., Soos, M., Sefcik, J. & Morbidelli, M. 2007 Effect of solid volume fraction on aggregation and breakage of colloidal suspensions in batch and continuous stirred tanks. Langmuir 23, 16641673.CrossRefGoogle ScholarPubMed
Pandya, J. D. & Spielman, L. A. 1982 Floc breakage in agitated suspensions: Theory and data processing strategy. J. Colloid Interface Sci. 90, 517531.CrossRefGoogle Scholar
Pope, S. B. 1990 Langrangian microscales in turbulence. Phil. Trans. R. Soc. Lond. A 333, 309319.Google Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Potanin, A. A. 1993 On the computer simulation of the deformation and breakage of colloidal aggregates in shear flow. J. Colloid Interface Sci. 157, 399410.CrossRefGoogle Scholar
Prince, M. J. & Blanch, H. W. 1990 Bubble coalescence and break-up in air-sparged columns. AIChE J. 36, 14851499.CrossRefGoogle Scholar
Risso, F. 2000 The mechanisms of deformation and breakage of drops and bubbles. Multiphase Sci. Tech. 12, 150.CrossRefGoogle Scholar
Saffman, P. G. & Turner, J. S. 1956 On the collision of drops in turbulent clouds. J. Fluid Mech. 1, 1630.CrossRefGoogle Scholar
Selomulya, C., Bushell, G., Amal, R. & Waite, T. D. 2002 Aggregation mechanisms of latex of different particle sizes in a controlled shear environment. Langmuir 18, 19741984.CrossRefGoogle Scholar
She, Z. S. & Leveque, E. 1994 Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 72, 336339.CrossRefGoogle ScholarPubMed
Sonntag, R. C. & Russel, W. B. 1986 Structure and breakage of flocs subjected to fluid stresses, I. Shear experiments. J. Colloid Interface Sci. 113, 399413.CrossRefGoogle Scholar
Sonntag, R. C. & Russel, W. B. 1987 a Elastic properties of flocculated networks. J. Colloid Interface Sci. 116, 485489.CrossRefGoogle Scholar
Sonntag, R. C. & Russel, W. B. 1987 b Structure and breakage of flocs subjected to fluid stresses, II. Theory. J. Colloid Interface Sci. 115, 378389.CrossRefGoogle Scholar
Sonntag, R. C. & Russel, W. B. 1987 c Structure and breakage of flocs subjected to fluid stresses, III. Converging Flow. J. Colloid Interface Sci. 115, 390395.CrossRefGoogle Scholar
Soos, M., Moussa, A. S., Ehrl, L., Sefcik, J., Wu, H. & Morbidelli, M. 2008 Effect of shear rate on aggregate size and morphology investigated under turbulent conditions in stirred tank. J. Colloid Interface Sci. 319, 577589.CrossRefGoogle ScholarPubMed
Spicer, P. T. & Pratsinis, S. E. 1996 Coagulation and fragmentation: Universal steady-state particle size distribution. AIChE J. 42, 16121620.CrossRefGoogle Scholar
Sreenivasan, K. R. 1999 Fluid turbulence. Rev. Mod. Phys. 71, S383S395.CrossRefGoogle Scholar
Sreenivasan, K. R. & Antonia, R. A. 1997 The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29, 435472.CrossRefGoogle Scholar
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.CrossRefGoogle Scholar
Tomi, D. T. & Bagster, D. F. 1978 The behaviour of aggregates in stirred vessels. Part I: Theoretical considerations on the effects of agitation. Trans. IChemE 56, 18.Google Scholar
Tsouris, C. & Tavlarides, L. L. 1994 Breakage and coalescence models for drops in turbulent dispersions. AIChE. J. 40, 395406.CrossRefGoogle Scholar
Vedula, P. & Yeung, P. K. 1999 Similarity scaling of acceleration and pressure statistics in numerical simulations of isotropic turbulence. Phys. Fluids 11, 12021220.CrossRefGoogle Scholar
Vedula, P., Yeung, P. K. & Fox, R. O. 2001 Dynamics of scalar dissipation in isotropic turbulence: a numerical and modelling study. J. Fluid Mech. 433, 2960.CrossRefGoogle Scholar
Wang, L.-P., Chen, S., Brasseur, J. G. & Wyngaard, J. C. 1996 Examination of hypotheses in the Kolmogorov refined turbulence theory through high-resolution simulations. Part 1. Velocity field. J. Fluid Mech. 309, 113156.CrossRefGoogle Scholar
van de Water, W. & Herweijer, J. A. 1999 High order structure functions of turbulence. J. Fluid Mech. 387, 337.CrossRefGoogle Scholar
West, A. H. L., Melrose, J. R. & Ball, R. C. 1994 Computer simulations of the breakage of colloid aggregates. Phys. Rev. E 49, 42374249.Google Scholar
Yeung, A. K. C. & Pelton, R. 1996 Micromechanics: A new approach to studying the strength and breakage of flocs. J. Colloid Interface Sci. 184, 579585.CrossRefGoogle Scholar
Yeung, P. K. 2001 Lagrangian characteristics of turbulence and scalar transport in direct numerical simulations. J. Fluid Mech. 427, 241274.CrossRefGoogle Scholar
Yeung, P. K., Pope, S. B. & Kurth, E. A., Lamorgese, A. G. 2007 Lagrangian conditional statistics, acceleration and local relative motion in numerically simulated isotropic turbulence. J. Fluid Mech. 582, 399422.CrossRefGoogle Scholar
Yeung, P. K., Pope, S. B., Lamorgese, A. G. & Donzis, D. A. 2006 a Acceleration and dissipation statistics of numerically simulated isotropic turbulence. Phys. Fluids 18, 065103.CrossRefGoogle Scholar
Yeung, P. K., Pope, S. B. & Sawford, B. L. 2006 b Reynolds number dependence of Lagrangian statistics in large numerical simulations of isotropic turbulence. J. Turbulence 7, 58.CrossRefGoogle Scholar
Zaccone, A., Lattuada, M., Wu, H. & Morbidelli, M. 2007 Theoretical elastic moduli for disordered packings of interconnected spheres. J. Chem. Phys. 127, 174512.CrossRefGoogle ScholarPubMed