Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T05:17:38.710Z Has data issue: false hasContentIssue false

Modulation of elasto-inertial transitions in Taylor–Couette flow by small particles

Published online by Cambridge University Press:  27 October 2021

Tom Lacassagne*
Affiliation:
FLUME, Department of Mechanical Engineering, University College London (UCL), London WC1E 7JE, UK IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Energy en Environment, F-59000 Lille, France
Theofilos Boulafentis
Affiliation:
FLUME, Department of Mechanical Engineering, University College London (UCL), London WC1E 7JE, UK
Neil Cagney
Affiliation:
School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
Stavroula Balabani*
Affiliation:
FLUME, Department of Mechanical Engineering, University College London (UCL), London WC1E 7JE, UK
*
Email addresses for correspondence: tom.lacassagne@imt-nord-europe.fr, s.balabani@ucl.ac.uk
Email addresses for correspondence: tom.lacassagne@imt-nord-europe.fr, s.balabani@ucl.ac.uk

Abstract

Particle suspensions in non-Newtonian liquid matrices are frequently encountered in nature and industrial applications. We here study the Taylor–Couette flow (TCF) of semidilute spherical particle suspensions (volume fraction $\leq 0.1$) in viscoelastic, constant-viscosity liquids (Boger fluids). We describe the influence of particle load on various flow transitions encountered in TCF of such fluids, and on the nature of these transitions. Particle addition is found to delay the onset of first- and second-order transitions, thus stabilising laminar flows. It also renders them hysteretic, suggesting an effect on the nature of bifurcations. The transition to elasto-inertial turbulence (EIT) is shown to be delayed by the presence of particles, and the features of EIT altered, with preserved spatio-temporal large scales. These results imply that particle loading and viscoelasticity, which are known to destabilise the flow when considered separately, can on the other hand compete with one another and ultimately stabilise the flow when considered together.

Type
JFM Rapids
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baroudi, L., Majji, M.V. & Morris, J.F. 2020 Effect of inertial migration of particles on flow transitions of a suspension Taylor–Couette flow. Phys. Rev. Fluids 5 (11), 114303.CrossRefGoogle Scholar
Cagney, N., Lacassagne, T. & Balabani, S. 2020 Taylor–Couette flow of polymer solutions with shear-thinning and viscoelastic rheology. J. Fluid Mech. 905, A28.CrossRefGoogle Scholar
Dagois-Bohy, S., Hormozi, S., Guazzelli, E. & Pouliquen, O. 2015 Rheology of dense suspensions of non-colloidal spheres in yield-stress fluids. J. Fluid Mech. 776, R2.Google Scholar
Dash, A., Anantharaman, A. & Poelma, C. 2020 Particle-laden Taylor–Couette flows: higher-order transitions and evidence for azimuthally localized wavy vortices. J. Fluid Mech. 903, A20.CrossRefGoogle Scholar
D'Avino, G., Greco, F. & Maffettone, P.L. 2017 Particle migration due to viscoelasticity of the suspending liquid and its relevance in microfluidic devices. Annu. Rev. Fluid Mech. 49 (1), 341360.CrossRefGoogle Scholar
Dherbécourt, D., Charton, S., Lamadie, F., Cazin, S. & Climent, E. 2016 Experimental study of enhanced mixing induced by particles in Taylor–Couette flows. Chem. Engng Res. Des. 108, 109117.CrossRefGoogle Scholar
Dutcher, C.S. & Muller, S.J. 2009 Spatio-temporal mode dynamics and higher order transitions in high aspect ratio Newtonian Taylor–Couette flows. J. Fluid Mech. 641, 85113.CrossRefGoogle Scholar
Dutcher, C.S. & Muller, S.J. 2013 Effects of moderate elasticity on the stability of co- and counter-rotating Taylor–Couette flows. J. Rheol. 57 (3), 791812.CrossRefGoogle Scholar
Fang, F., Aabith, S., Homer-Vanniasinkam, S. & Tiwari, M.K. 2017 High-resolution 3D printing for healthcare underpinned by small-scale fluidics. In 3D Printing in Medicine (ed. D.M. Kalaskar), chap. 9, pp. 167–206. Woodhead Publishing.CrossRefGoogle Scholar
Fardin, M.A., Perge, C. & Taberlet, N. 2014 The hydrogen atom of fluid dynamics – introduction to the Taylor–Couette flow for soft matter scientists. Soft Matt. 10 (20), 35233535.CrossRefGoogle ScholarPubMed
Gillissen, J.J.J., Cagney, N., Lacassagne, T., Papadopoulou, A., Balabani, S. & Wilson, H.J. 2020 Taylor–Couette instability in disk suspensions: experimental observation and theory. Phys. Rev. Fluids 5 (8), 083302.CrossRefGoogle Scholar
Gillissen, J.J.J. & Wilson, H.J. 2019 Taylor–Couette instability in sphere suspensions. Phys. Rev. Fluids 4 (4), 043301.CrossRefGoogle Scholar
Groisman, A. & Steinberg, V. 1996 Couette-Taylor flow in a dilute polymer solution. Phys. Rev. Lett. 77 (8), 14801483.CrossRefGoogle Scholar
Groisman, A. & Steinberg, V. 2004 Elastic turbulence in curvilinear flows of polymer solutions. New J. Phys. 6, 2929.CrossRefGoogle Scholar
Lacassagne, T., Cagney, N. & Balabani, S. 2021 Shear-thinning mediation of elasto-inertial Taylor–Couette flow. J. Fluid Mech. 915, A91.CrossRefGoogle Scholar
Lacassagne, T., Cagney, N., Gillissen, J.J.J. & Balabani, S. 2020 Vortex merging and splitting: a route to elastoinertial turbulence in Taylor–Couette flow. Phys. Rev. Fluids 5 (11), 113303.CrossRefGoogle Scholar
Liu, Z., Liu, L., Zhou, H., Wang, J. & Deng, L. 2015 Toothpaste microstructure and rheological behaviors including aging and partial rejuvenation. Korea Aust. Rheol. J. 27 (3), 207212.CrossRefGoogle Scholar
Majji, M.V., Banerjee, S. & Morris, J.F. 2018 Inertial flow transitions of a suspension in Taylor–Couette geometry. J. Fluid Mech. 835, 936969.CrossRefGoogle Scholar
Majji, M.V. & Morris, J.F. 2018 Inertial migration of particles in Taylor–Couette flows. Phys. Fluids 30 (3), 033303.CrossRefGoogle Scholar
Martínez-Arias, B. & Peixinho, J. 2017 Torque in Taylor–Couette flow of viscoelastic polymer solutions. J. Non-Newtonian Fluid Mech. 247, 221228.CrossRefGoogle Scholar
Morris, J.F. 2020 Toward a fluid mechanics of suspensions. Phys. Rev. Fluids 5 (11), 110519.CrossRefGoogle Scholar
Ovarlez, G., Mahaut, F., Deboeuf, S., Lenoir, N., Hormozi, S. & Chateau, X. 2015 Flows of suspensions of particles in yield stress fluids. J. Rheol. 59 (6), 14491486.CrossRefGoogle Scholar
Ramesh, P. & Alam, M. 2020 Interpenetrating spiral vortices and other coexisting states in suspension Taylor–Couette flow. Phys. Rev. Fluids 5 (4), 042301.CrossRefGoogle Scholar
Ramesh, P., Bharadwaj, S. & Alam, M. 2019 Suspension Taylor–Couette flow: co-existence of stationary and travelling waves, and the characteristics of Taylor vortices and spirals. J. Fluid Mech. 870, 901940.CrossRefGoogle Scholar
Rida, Z., Cazin, S., Lamadie, F., Dherbécourt, D., Charton, S. & Climent, E. 2019 Experimental investigation of mixing efficiency in particle-laden Taylor–Couette flows. Exp. Fluids 60 (4), 61.CrossRefGoogle Scholar
Royer, J.R., Blair, D.L. & Hudson, S.D. 2016 Rheological signature of frictional interactions in shear thickening suspensions. Phys. Rev. Lett. 116 (18), 188301.CrossRefGoogle ScholarPubMed
Saint-Michel, B., Bodiguel, H., Meeker, S. & Manneville, S. 2017 Simultaneous concentration and velocity maps in particle suspensions under shear from rheo-ultrasonic imaging. Phys. Rev. Appl. 8 (1), 014023.CrossRefGoogle Scholar
Saint-Michel, B., Manneville, S., Meeker, S., Ovarlez, G. & Bodiguel, H. 2019 X-ray radiography of viscous resuspension. Phys. Fluids 31 (10), 103301.CrossRefGoogle Scholar
Schaefer, C., Morozov, A. & Wagner, C. 2018 Geometric scaling of elastic instabilities in the Taylor–Couette geometry: a theoretical, experimental and numerical study. J. Non-Newtonian Fluid Mech. 259, 7890.CrossRefGoogle Scholar
Yang, M. & Shaqfeh, E.S.G. 2018 a Mechanism of shear thickening in suspensions of rigid spheres in Boger fluids. Part I: dilute suspensions. J. Rheol. 62 (6), 13631377.CrossRefGoogle Scholar
Yang, M. & Shaqfeh, E.S.G. 2018 b Mechanism of shear thickening in suspensions of rigid spheres in Boger fluids. Part II: suspensions at finite concentration. J. Rheol. 62 (6), 13791396.CrossRefGoogle Scholar