Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T01:32:53.613Z Has data issue: false hasContentIssue false

Modulation of turbulence by dispersed solid particles in a spatially developing flat-plate boundary layer

Published online by Cambridge University Press:  03 August 2016

Dong Li
Affiliation:
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Kun Luo
Affiliation:
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Jianren Fan*
Affiliation:
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
*
Email address for correspondence: fanjr@zju.edu.cn

Abstract

Direct numerical simulations of particle-laden spatially developing turbulent boundary layers over a flat plate have been performed to investigate the effect of inertial particles on turbulence modulation, using the Eulerian–Lagrangian point-particle approach with two-way coupling. The particles are smaller than the Kolmogorov length scale of the dilute flow, and inter-particle collisions are not considered. The simulation results show that the addition of small solid particles increases the mean streamwise fluid velocity, which in turn leads to a reduction in the boundary layer integral parameters and an increase in the skin-friction drag. These effects become more pronounced as the particle Stokes number and mass loading increase. The streamwise turbulence intensity is slightly enhanced in the close vicinity of the wall but damped in the outer layer. In contrast, the Reynolds stress and the turbulence intensities in the wall-normal and spanwise directions are substantially attenuated across the entire boundary layer, and the levels of attenuation increase monotonically with both particle Stokes number and mass loading. The exchange of kinetic energy between particles and fluid indicates that particle–fluid interactions cause extra energy dissipation, which plays a crucial role in turbulence modulation.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.Google Scholar
Boivin, M., Simonin, O. & Squires, K. D. 1998 Direct numerical simulation of turbulence modulation by particles in isotropic turbulence. J. Fluid Mech. 375, 235263.Google Scholar
Brooke, J. W., Kontomaris, K., Hanratty, T. J. & McLaughlin, J. B. 1992 Turbulent deposition and trapping of aerosols at a wall. Phys. Fluids A 4, 825834.CrossRefGoogle Scholar
Cantwell, B. J. 1981 Organized motion in turbulent flow. Annu. Rev. Fluid Mech. 13, 457515.Google Scholar
Dennis, S. C. R., Singh, S. N. & Ingham, D. B. 1980 The steady flow due to a rotating sphere at low and moderate Reynolds numbers. J. Fluid Mech. 101, 257279.CrossRefGoogle Scholar
Desjardins, O., Blanquart, G., Balarac, G. & Pitsch, H. 2008 High order conservative finite difference scheme for variable density low Mach number turbulent flows. J. Comput. Phys. 227, 71257159.Google Scholar
Dritselis, C. D. & Vlachos, N. S. 2008 Numerical study of educed coherent structures in the near-wall region of a particle-laden channel flow. Phys. Fluids 20, 055103.Google Scholar
Dritselis, C. D. & Vlachos, N. S. 2011 Numerical investigation of momentum exchange between particles and coherent structures in low Re turbulent channel flow. Phys. Fluids 23, 025103.Google Scholar
Elghobashi, S. & Truesdell, G. C. 1992 Direct simulation of particle dispersion in a decaying isotropic turbulence. J. Fluid Mech. 242, 655700.Google Scholar
Elghobashi, S. & Truesdell, G. C. 1993 On the two-way interaction between homogeneous turbulence and dispersed solid particles. I: turbulence modification. Phys. Fluids 5, 17901801.Google Scholar
Gore, R. A. & Crowe, C. T. 1989 Effect of particle size on modulating turbulent intensity. Intl J. Multiphase Flow 15, 279285.Google Scholar
Gualtieri, P., Picano, F., Sardina, G. & Casciola, C. M. 2013 Clustering and turbulence modulation in particle-laden shear flows. J. Fluid Mech. 715, 134162.CrossRefGoogle Scholar
Gualtieri, P., Picano, F., Sardina, G. & Casciola, C. M. 2015 Exact regularized point particle method for multiphase flows in the two-way coupling regime. J. Fluid Mech. 773, 520561.Google Scholar
Hadinoto, K., Jones, E. N., Yurteri, C. & Curtis, J. S. 2005 Reynolds number dependence of gas-phase turbulence in gas–particle flows. Intl J. Multiphase Flow 31, 416434.Google Scholar
Hetsroni, G. 1989 Particles–turbulence interaction. Intl J. Multiphase Flow 15, 735746.Google Scholar
Hunt, J. C. R., Wray, A. A. & Moin, P.1988 Eddies, streams, and convergence zones in turbulent flows. In Proceedings of Summer Program, 9–14. Centre for Turbulence Research, Stanford University.Google Scholar
Jacobs, R. G. & Durbin, P. A. 2001 Simulations of bypass transition. J. Fluid Mech. 428, 185212.Google Scholar
Kaftori, D., Hetsroni, G. & Banerjee, S. 1995 Particle behavior in the turbulent boundary-layer. 1. Motion, deposition, and entrainment. Phys. Fluids 7, 10951106.Google Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully-developed channel flow at low Reynolds-number. J. Fluid Mech. 177, 133166.Google Scholar
Klewicki, J., Ebner, R. & Wu, X. 2011 Mean dynamics of transitional boundary-layer flow. J. Fluid Mech. 682, 617651.Google Scholar
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30, 741773.Google Scholar
Kulick, J. D., Fessler, J. R. & Eaton, J. K. 1994 Particle response and turbulence modification in fully developed channel flow. J. Fluid Mech. 277, 109134.Google Scholar
Li, D., Wei, A., Luo, K. & Fan, J. 2016 Direct numerical simulation of a particle-laden flow in a flat plate boundary layer. Intl J. Multiphase Flow 79, 124143.CrossRefGoogle Scholar
Li, J., Wang, H., Liu, Z., Chen, S. & Zheng, C. 2012 An experimental study on turbulence modification in the near-wall boundary layer of a dilute gas-particle channel flow. Exp. Fluids 53, 13851403.Google Scholar
Li, Y., McLaughlin, J. B., Kontomaris, K. & Portela, L. 2001 Numerical simulation of particle-laden turbulent channel flow. Phys. Fluids 13, 2957.Google Scholar
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283315.Google Scholar
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883889.Google Scholar
Mei, R. 1992 An approximate expression for the shear lift force on a spherical particle at finite Reynolds number. Intl J. Multiphase Flow 18, 145147.Google Scholar
Nasr, H., Ahmadi, G. & McLaughlin, J. B. 2009 A DNS study of effects of particle–particle collisions and two-way coupling on particle deposition and phasic fluctuations. J. Fluid Mech. 640, 507.Google Scholar
Oesterle, B. & Dinh, T. B. 1998 Experiments on the lift of a spinning sphere in a range of intermediate Reynolds numbers. Exp. Fluids 25, 1622.Google Scholar
Orlanski, I. 1976 A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys. 21, 251269.Google Scholar
Ovchinnikov, V., Choudhari, M. M. & Piomelli, U. G. O. 2008 Numerical simulations of boundary-layer bypass transition due to high-amplitude free-stream turbulence. J. Fluid Mech. 613, 135169.CrossRefGoogle Scholar
Pan, Y. & Banerjee, S. 1996 Numerical simulation of particle interactions with wall turbulence. Phys. Fluids 8, 2733.Google Scholar
Perot, J. B. 1993 An analysis of the fractional step method. J. Comput. Phys. 108, 5158.Google Scholar
Portela, L. M. & Oliemans, R. V. A. 2003 Eulerian–Lagrangian DNS/LES of particle–turbulence interactions in wall-bounded flows. Intl J. Numer. Meth. Fluids 43, 10451065.CrossRefGoogle Scholar
Rashidi, M., Hetsroni, G. & Banerjee, S. 1990 Particle–turbulence interaction in a boundary layer. Intl J. Multiphase Flow 16, 935949.Google Scholar
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.CrossRefGoogle Scholar
Rogers, C. B. & Eaton, J. K. 1991 The effect of small particles on fluid turbulence in a flat-plate, turbulent boundary layer in air. Phys. Fluids 3, 928.Google Scholar
Rouson, D. W. I. & Eaton, J. K. 2001 On the preferential concentration of solid particles in turbulent channel flow. J. Fluid Mech. 428, 149169.Google Scholar
Rubinow, S. I. & Keller, J. B. 1961 The transverse force on a spinning sphere moving in a viscous fluid. J. Fluid Mech. 11, 447459.Google Scholar
Sardina, G., Schlatter, P., Picano, F., Casciola, C. M., Brandt, L. & Henningson, D. S. 2012 Self-similar transport of inertial particles in a turbulent boundary layer. J. Fluid Mech. 706, 584596.Google Scholar
Sawatzki, O. 1970 Flow field around a rotating sphere. Acta Mech. 9, 159214.Google Scholar
Sayadi, T., Hamman, C. W. & Moin, P. 2013 Direct numerical simulation of complete H-type and K-type transitions with implications for the dynamics of turbulent boundary layers. J. Fluid Mech. 724, 480509.Google Scholar
Schiller, L. & Naumann, A. 1933 Fundamental calculations in gravitational processing. Z. Verein. Deutsch. Ing. 77, 318320.Google Scholar
Squires, K. D. & Eaton, J. K. 1990 Particle response and turbulence modification in isotropic turbulence. Phys. Fluids A 2, 1191.Google Scholar
Sundaram, S. & Collins, L. R. 1999 A numerical study of the modulation of isotropic turbulence by suspended particles. J. Fluid Mech. 379, 105143.Google Scholar
Tanière, A., Oesterlé, B. & Monnier, J. C. 1997 On the behaviour of solid particles in a horizontal boundary layer with turbulence and saltation effects. Exp. Fluids 23, 463471.Google Scholar
Tsuji, Y., Morikawa, Y. & Shiomi, H. 1984 LDV measurements of an air–solid two-phase flow in a vertical pipe. J. Fluid Mech. 139, 417434.CrossRefGoogle Scholar
Virk, P. S. 1975 Drag reduction fundamentals. AIChE J. 21, 625656.Google Scholar
Vreman, A. W. 2007 Turbulence characteristics of particle-laden pipe flow. J. Fluid Mech. 584, 235.Google Scholar
Wu, X. & Moin, P. 2009 Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. J. Fluid Mech. 630, 541.Google Scholar
Yamamoto, Y., Potthoff, M., Tanaka, T., Kajishima, T. & Tsuji, Y. 2001 Large-eddy simulation of turbulent gas-particle flow in a vertical channel: effect of considering inter-particle collisions. J. Fluid Mech. 442, 303334.Google Scholar
Yarin, L. & Hetsroni, G. 1994 Turbulence intensity in dilute two-phase flows – 3. The particles–turbulence interaction in dilute two-phase flow. Intl J. Multiphase Flow 20, 2744.Google Scholar
Zhao, L. H., Andersson, H. I. & Gillissen, J. J. J. 2010 Turbulence modulation and drag reduction by spherical particles. Phys. Fluids 22, 081702.Google Scholar
Zhao, L. H., Andersson, H. I. & Gillissen, J. J. J. 2013 Interphasial energy transfer and particle dissipation in particle-laden wall turbulence. J. Fluid Mech. 715, 3259.Google Scholar