Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T02:03:40.682Z Has data issue: false hasContentIssue false

Motion of a particle near a rough wall in a viscous shear flow

Published online by Cambridge University Press:  14 October 2021

F. Charru
Affiliation:
Institut de Mécanique des Fluides de Toulouse-UMR CNRS/INPT/UPS 5502, 2, Avenue Camille Soula, 31400 Toulouse, France
E. Larrieu
Affiliation:
Institut de Mécanique des Fluides de Toulouse-UMR CNRS/INPT/UPS 5502, 2, Avenue Camille Soula, 31400 Toulouse, France
J.-B. Dupont
Affiliation:
Institut de Mécanique des Fluides de Toulouse-UMR CNRS/INPT/UPS 5502, 2, Avenue Camille Soula, 31400 Toulouse, France
R. Zenit
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México D.F. 04510, México

Abstract

The motion of a spherical particle along a rough bed in a simple shear viscous flow is studied experimentally for a wide range of parameters, varying the particle size and density, the fluid viscosity and the shear rate γ. The instantaneous particle velocity is calculated in the stream, transverse and vertical directions, using a high-speed video imaging system. It is found that the normalized streamwise mean particle velocity U/US, where US is the Stokes settling velocity, depends only on the dimensionless shear rate μ γ/(Δ ρ g d), this relationship being independent of the particle Reynolds number Rep. This result holds for small Rep, which was the case in our experiments (Rep < 10). The characteristic amplitude and frequency of the velocity fluctuations are also given and discussed. A model is then proposed for the mean streamwise velocity, based on ideas of Bagnold (Proc. R. Soc. Lond. A, vol. 332, 1973, p. 473) and calculations of Goldman et al. (Chem. Engng Sci., vol. 22, 1967b, p. 653) for the velocity of a particle close to a smooth plane. From this model an equivalent bed roughness and an effective friction coefficient are deduced.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbot, J. E. & Francis, J. R. D. 1977 Saltation and suspension trajectories of solid grains in a water stream. Phil. Trans. R. Soc. Lond. A 284, 225254.Google Scholar
Bagnold, R. A. 1954 Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. Lond. A 225, 4963.Google Scholar
Bagnold, R. A. 1973 The nature of saltation and of ‘bed-load’ transport in water. Proc. R. Soc. Lond. A 332, 473504.Google Scholar
Buffington, J. M. & Montgomery, D. R. 1997 A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers. Water Resour. Res. 33, 19932029.CrossRefGoogle Scholar
Chaoui, M. & Feuillebois, F. 2003 Creeping flow around a sphere in a shear flow close to a wall. Q. J. Mech. Appl. Maths 56, 381410.CrossRefGoogle Scholar
Charru, F., Mouilleron-Arnould, H. & Eiff, O. 2004 Erosion and deposition of particles on a bed sheared by a viscous flow. J. Fluid Mech. 519, 5580.CrossRefGoogle Scholar
Cherukat, P. & McLaughlin, J. B. 1994 The inertial lift on a rigid sphere in a linear shear flow field near a flat wall. J. Fluid Mech. 263, 118.CrossRefGoogle Scholar
Chin, C. O., Melville, B. W. & Raudkivi, A. J. 1994 Streambed armoring. J. Hydraul. Engng 120, 899918.Google Scholar
Francis, J. R. D. 1973 Experiments on the motion of solitary grains along the bed of a water stream. Proc. R. Soc. Lond. A 332, 443471.Google Scholar
Goldman, A. J., Cox, R. G. & Brenner, H. 1967a Slow viscous motion of a sphere parallel to a plane wall - I Motion through a quiescent fluid. Chem. Engng Sci. 22, 637651.CrossRefGoogle Scholar
Goldman, A. J., Cox, R. G. & Brenner, H. 1967b Slow viscous motion of a sphere parallel to a plane wall - II Couette flow. Chem. Engng Sci. 22, 653660.Google Scholar
Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics. Prentice Hall.Google Scholar
Hunt, M. L., Zenit, R., Campbell, C. S. & Brennen, C. E. 2002 Revisiting the 1954 suspension experiments of R. A. Bagnold. J. Fluid Mech. 452, 124.CrossRefGoogle Scholar
King, M. R. & Leighton, D. T. 1997 Measurement of the inertial lift on a moving sphere in contact with a plane wall in a shear flow. Phys. Fluids 9, 12481255.CrossRefGoogle Scholar
Krishnan, G. P. & Leighton, D. T. 1995 Inertial lift on a moving sphere in contact with a plane wall in a shear flow. Phys. Fluids 7, 25382545.CrossRefGoogle Scholar
Midi, G. D. R. 2004 On dense granular flows. Eur. Phys. J. E 14, 341365.CrossRefGoogle Scholar
O'Neill, M. E. 1968 A sphere in contact with a plane wall in a slow linear shear flow. Chem. Engng Sci. 23, 12931298.CrossRefGoogle Scholar
Quartier, L., Andreotti, B., Douady, S. & Daerr, A. 2000 Dynamics of a grain on a sandpile model. Phys. Rev. E 62, 106114.CrossRefGoogle ScholarPubMed
Riguidel, F.-X., Jullien, R., Ristow, G. H., Hansen, A. & Bideau, D. 1994 Behaviour of a sphere on a rough inclined plane. J. Phys. Paris I 4, 261272.Google Scholar
Samson, L., Ippolito, I., Batrouni, G. G. & Lemaitre, J. 1998 Diffusive properties of motion on a bumpy plane. Eur. Phys. J. B 3, 377385.Google Scholar
Williams, P. S., Koch, T. & Giddings, J. C. 1992 Characterization of near-wall hydrodynamic lift forces using sedimentation field-flow fractionnation. Chem. Engng Sci. 111, 121127.Google Scholar
Zhao, Y., Galvin, K.P. & Davis, R. H. 2002 Motion of a sphere down a rough plane in a viscous fluid. Intl J. Multiphase Flow 28, 17871800.CrossRefGoogle Scholar