Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T19:31:53.114Z Has data issue: false hasContentIssue false

A multi-fidelity modelling approach for evaluation and optimization of wing stroke aerodynamics in flapping flight

Published online by Cambridge University Press:  13 March 2013

Lingxiao Zheng
Affiliation:
Department of Mechanical Engineering, the Johns Hopkins University, Baltimore, MD 21218, USA
Tyson L. Hedrick
Affiliation:
Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
Rajat Mittal*
Affiliation:
Department of Mechanical Engineering, the Johns Hopkins University, Baltimore, MD 21218, USA
*
Email address for correspondence: mittal@jhu.edu

Abstract

The aerodynamics of hovering flight in a hawkmoth (Manduca sexta) are examined using a computational modelling approach which combines a low-fidelity blade-element model with a high-fidelity Navier–Stokes-based flow solver. The focus of the study is on understanding the optimality of the hawkmoth-inpired wingstrokes with respect to lift generation and power consumption. The approach employs a tight coupling between the computational models and experiments; the Navier–Stokes model is validated against experiments, and the blade-element model is calibrated with the data from the Navier–Stokes modelling. In the first part of the study, blade-element and Navier–Stokes modelling are used concurrently to assess the predictive capabilities of the blade-element model. Comparisons between the two modelling approaches also shed insights into specific flow features and mechanisms that are lacking in the lower-fidelity model. Subsequently, we use blade-element modelling to explore a large kinematic parameter space of the flapping wing, and Navier–Stokes modelling is used to assess the performance of the wing-stroke identified as optimal by the blade-element parameter survey. This multi-fidelity optimization study indicates that even within a parameter space constrained by the animal’s natural flapping amplitude and frequency, it is relatively easy to synthesize a wing stroke that exceeds the aerodynamic performance of the hawkmoth wing stroke. Within the prescribed constraints, the optimal wing stroke closely approximates the condition of normal hover, and the implications of these findings on hawkmoth flight capabilities as well as on the issue of biomimetic versus bioinspired design of flapping wing micro-aerial vehicles, are discussed.

Type
Papers
Copyright
©2013 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aono, H., Shyy, W. & Liu, H. 2009 Near wake vortex dynamics of a hovering hawkmoth. Acta Mechanica Sin. 25, 2336.CrossRefGoogle Scholar
Benini, E. & Toffolo, A. 2002 Optimal design of horizontal-axis wind turbines using blade-element theory and evolutionary computation. J. Solar Energy Engng 124, 357363.CrossRefGoogle Scholar
Berg, H. C. 2003 The rotary motor of bacterial flagella. Annu. Rev. Biochem. 72, 1954.Google Scholar
Berman, G. J. & Wang, Z. J. 2007 Energy-minimizing kinematics in hovering insect flight. J. Expl Biol. 582, 153168.Google Scholar
Blake, R. W. 1979 The mechanics of labriform locomotion I. Labriform locomotion in the angelfish (Pterophyllum eimekei): an analysis of the power stroke. J. Expl Biol. 82, 255271.Google Scholar
Bomphrey, R. J., Lawson, N. J., Harding, N. J., Taylor, G. K. & Thomas, A. L. R. 2005 The aerodynamics of manduca sexta: digital particle image velocimetry analysis of the leading-edge vortex. J. Expl Biol. 208, 10791094.CrossRefGoogle ScholarPubMed
Bozkurttas, M., Mittal, R., Dong, H., Lauder, G. V. & Madden, P. 2009 Low-dimensional models and performance scaling of a highly deformable fish pectoral fin. J. Fluid Mech. 631, 311342.Google Scholar
Casey, T. M. 1976 Flight energetics of sphinx moths: power input during hovering flight. J. Expl Biol. 64, 529543.Google Scholar
Combes, S. A. & Daniel, T. L. 2003 Into thin air: contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta . J. Expl Biol. 206, 29993006.CrossRefGoogle Scholar
Dai, H., Luo, H. & Doyle, J. F. 2012 Dynamic pitching of an elastic rectangular wing in hovering motion. J. Fluid Mech. 693, 473499.CrossRefGoogle Scholar
Delaurier, J. D. 1993 An aerodynamic model for flapping-wing flight. Aeronaut. J. 93, 125130.CrossRefGoogle Scholar
Dickinson, M. H., Lehmann, F.-O. & Sane, S. P. 1999 Wing rotation and the aerodynamic basis of insect flight. Science 284, 19541960.CrossRefGoogle ScholarPubMed
Du, G. & Sun, M. 2010 Effects of wing deformation on aerodynamic forces in hovering hoverflies. J. Expl Biol. 213, 22732283.Google Scholar
Ellington, C. P. 1984 The aerodynamics of hovering insect flight. III. Kinematics. Phil. Trans. R. Soc. Lond. B 305, 4178.Google Scholar
Ellington, C. P., Van Den Berg, C., Willmott, A. P. & Thomas, A. L. R. 1996 Leading-edge vortices in insect flight. Nature 384, 626630.Google Scholar
Floreano, D., Zufferey, J.-C., Srinivasan, M. V. & Ellington, C. P. 2009 The Flying Insects and Robots. Springer.Google Scholar
Fry, S. N., Sayaman, R. & Dickinson, M. H. 2003 The aerodynamics of free-flight maneuvers in Drosophila. Science 300, 495498.CrossRefGoogle ScholarPubMed
Hedrick, T. L. 2008 Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systerms. Bioinspiration Biomimetics 3, 034001.Google Scholar
Hedrick, T. L. & Daniel, T. L. 2006 Flight control in the hawkmoth manduca sexta: the inverse problem of hovering. J. Expl Biol. 209, 31143130.CrossRefGoogle ScholarPubMed
Van Kan, J. 1986 A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Stat. Comput. 7, 870891.Google Scholar
Krishnakumar, K. 1989 Microgenetic algorithms for stationary and nonstationary function optimization. SPIE Intelligent Control and Adaptive Systems 1196, 289296.Google Scholar
Lehmann, F.-O. & Dickinson, M. H. 1997 The changes in power requirements and muscle efficiency during elevated force production in the fruit fly Drosophila melanogaster . J. Expl Biol. 200, 11331143.CrossRefGoogle ScholarPubMed
Liu, H. & Aono, H. 2009 Size effects on insect hovering aerodynamics: an integrated computational study. Bioinspiration Biomimetics 4, 015002.Google Scholar
Liu, H., Ellington, C. P., Kawachi, K. & Van Den Berg, C. 1998 A computational fluid dynamic study of hawkmoth hovering. J. Expl Biol. 201, 461477.CrossRefGoogle ScholarPubMed
Mittal, R., Dong, H., Bozkurttas, M., Najjar, F. M., Vargas, A. & Von Loebbecke, A. 2008 A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. Comput. Phys. 227, 48254852.CrossRefGoogle ScholarPubMed
Mittal, R. & Iaccarino, G. 2005 Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239261.Google Scholar
Nakata, T. & Liu, H. 2012 Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach. Proc. R. Soc. B 279 (1729), 722731.Google Scholar
Nelder, J. A. & Mead, R. 1965 A simplex method for function minimization. Comput. J. 7, 308313.CrossRefGoogle Scholar
Osborne, M. F. M. 1951 Aerodynamics of flapping flight with application to insects. J. Expl Biol. 28, 221245.Google Scholar
Pennycuick, C. J., Hedenstrom, A. & Rosén, M. 2000 Horizontal flight of a swallow (Hirundo rustica) observed in a wind tunnel, with a new method for directly measuring mechanical power. J. Expl Biol. 203, 17551765.CrossRefGoogle Scholar
Sane, S. P. 2003 The aerodynamics of insect flight. J. Expl Biol. 206, 41914208.CrossRefGoogle ScholarPubMed
Sane, S. P. & Dickinson, M. H. 2002 The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. J. Expl Biol. 205, 10871096.Google Scholar
Seo, J. H. & Mittal, R. 2011 A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations. J. Comput. Phys. 230, 73477363.CrossRefGoogle ScholarPubMed
Stevenson, R. D. & Josephson, R. K. 1990 Effects of operating frequency and temperature on mechanical power output from moth flight muscle. J. Expl Biol. 149, 6178.Google Scholar
Sunada, S., Song, D., Meng, X., Wang, H. L. & Kawachi, K. 2002 Optical measurement of the deformation, motion, and generated forces of the wings of a moth. JSME Int. J. 45, 836842.Google Scholar
Tangorra, J. L., Lauder, G. V., Hunter, I. W., Mittal, R., Madden, P. G. A. & Bozkurttas, M. 2010 The effect of fin ray flexural rigidity on the propulsive forces generated by a biorobotic fish pectoral fin. J. Expl Biol. 213, 40434054.Google Scholar
Triantafyllou, G. S., Triantafyllou, M. S. & Grosenbaugh, M. A. 1993 Optimal thrust development in oscillating foils with application to fish propulsion. J. Fluids Struct. 7, 205224.Google Scholar
Tu, M. S. & Daniel, T. L. 2004 Submaximal power output from the dorsolongitudinal flight muscles of the hawkmoth manduca sexta. J. Expl Biol. 407, 46514662.Google Scholar
Udaykumar, H. S., Mittal, R., Rampunggoon, P. & Khanna, 2001 A sharp interface Cartesian grid method for simulating flows with complex moving boundaries. J. Comput. Phys. 174, 345380.Google Scholar
Usherwood, J. R. & Ellington, C. P. 2002 The aerodynamics of revolving wings: I. Model hawkmoth wings. J. Expl Biol. 205, 15471564.CrossRefGoogle ScholarPubMed
Walker, J. A., Thomas, A. L. R. & Taylor, G. K. 2008 Deformable wing kinematics in the desert locust: how and why do camber, twist and topography vary through the stroke?. J. R. Sci. Interface 6, 735746.Google Scholar
Walker, J. A. & Westneat, M. W. 2000 Mechanical performance of aquatic rowing and flying. Proc. R. Soc. Lond. B: Biol. Sci. 267, 18751881.Google Scholar
Wang, H., Ando, N. & Kanzaki, R. 2008 Active control of free flight manoeuvres in a hawkmoth, Agrius convolvuli . J. Expl Biol. 211, 423432.Google Scholar
Wang, H., Zeng, L., Liu, H. & Yin, C. 2003 Measuring wing kinematics, flight tranjectory and body attitude during forward flight and turing maneauvers in dragonflies. J. Expl Biol. 206, 745757.CrossRefGoogle Scholar
Warrick, D. R., Tobalske, B. W. & Powers, D. R. 2005 Aerodynamics of the hovering hummingbird. Nature 23, 10941097.CrossRefGoogle Scholar
Weis-Fogh, T. 1973 Estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J. Expl Biol. 59, 169230.Google Scholar
Willmott, A. P. & Ellington, C. P. 1997a The mechanics of flight in the hawkmoth manduca sexta: I. Kinematics of hovering and forward flight. J. Expl Biol. 200, 27052722.Google Scholar
Willmott, A. P. & Ellington, C. P. 1997b The mechanics of flight in the hawkmoth manduca sexta: II. Aerodynamic consequences of kinematic and morphological variation. J. Expl Biol. 200, 27232745.CrossRefGoogle ScholarPubMed
Willmott, A. P., Ellington, C. P. & Thomas, A. L. R. 1997 Flow visualization and unsteady aerodynamics in the flight of the hawkmoth, manduca sexta. Phil. Trans. R. Soc. Lond. B 352, 303316.Google Scholar
Wood, R. 2008 The first takeoff of a biologically inspired at-scale robotic insect. IEEE Trans. Robot. 24, 341347.CrossRefGoogle Scholar
Ye, T., Mittal, R., Udaykumar, H. S. & Shyy, W. 1999 An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. J. Comput. Phys. 156, 209240.Google Scholar
Young, J., Walker, S. M., Bomphrey, R. J., Taylor, G. K. & Thomas, A. L. R. 2009 Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science 325, 15491552.Google Scholar
Zang, Y., Street, R. L. & Koseff, J. R. 1994 A non-staggered grid, fractional step method for time-dependent incompressible Navier–Stokes equations in curvilinear coordinates. J. Comput. Phys. 114, 1833.Google Scholar
Zeng, L., Hao, Q. & Kawachi, K. 2000 A scanning projected line method for measuring a beating bumblebee wing. Opt. Commun. 183, 1944.Google Scholar
Zheng, L., Mittal, R. & Hedrick, T. L. 2013 Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies. PLoS ONE 8 (1), e53060.Google Scholar