Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-02T19:04:52.689Z Has data issue: false hasContentIssue false

A multiple time scale approach for anisotropic inertial wave turbulence

Published online by Cambridge University Press:  31 October 2023

Sébastien Galtier*
Affiliation:
Laboratoire de Physique des Plasmas, École polytechnique, Université Paris-Saclay and Institut universitaire de France, 91128 Palaiseau, France
*
Email address for correspondence: sebastien.galtier@lpp.polytechnique.fr

Abstract

Wave turbulence is the study of the long-time statistical behaviour of equations describing a set of weakly nonlinear interacting waves. Such a theory, which has a natural asymptotic closure, allows us to probe the nature of turbulence more deeply than the exact Kolmogorov laws by rigorously proving the direction of the cascade and the existence of an inertial range, predicting stationary spectra for conserved quantities, or evaluating the Kolmogorov constant. An emblematic example is given by fast rotating fluids for which a wave turbulence theory has been derived by Galtier (Phys. Rev. E, vol. 68, issue 1, 2003, p. 015301). This work involves non-trivial analytical developments for a problem that is anisotropic by nature. We propose here a new path for the derivation of the kinetic equation by using the anisotropy at the beginning of the analysis. We show that the helicity basis is not necessary to obtain the wave amplitude equation for the canonical variables that involve a combination of poloidal and toroidal fields. The multiple time scale method adapted to this anisotropic problem is then used to derive the kinetic equation that is the same as the original work when anisotropy is eventually taken into account. This result proves the commutativity between asymptotic closure and anisotropy. In addition, the multiple time scale method informs us that the kinetic equation can be derived without imposing restrictions on the probability distribution of the wave amplitude such as quasi-Gaussianity, or on the phase such as random phase approximation that naturally occurs dynamically.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baroud, C.N., Plapp, B.B., She, Z.S. & Swinney, H.L. 2002 Anomalous self-similarity in a turbulent rapidly rotating fluid. Phys. Rev. Lett. 88 (11), 114501.CrossRefGoogle Scholar
Bellet, F., Godeferd, F.S., Scott, J.F. & Cambon, C. 2006 Wave turbulence in rapidly rotating flows. J. Fluid Mech. 562, 83121.CrossRefGoogle Scholar
Benney, D.J. & Newell, A.C. 1969 Random wave closures. Stud. Appl. Maths 48 (1), 2953.CrossRefGoogle Scholar
Benney, D.J. & Saffman, P.G. 1966 Nonlinear interactions of random waves in a dispersive medium. Proc. R. Soc. Lond. A 289 (1418), 301320.Google Scholar
van Bokhoven, L.J.A., Clercx, H.J.H., van Heijst, G.J.F. & Trieling, R.R. 2009 Experiments on rapidly rotating turbulent flows. Phys. Fluids 21 (9), 096601.CrossRefGoogle Scholar
Bourouiba, L. 2008 Discreteness and resolution effects in rapidly rotating turbulence. Phys. Rev. E 78, 056309.CrossRefGoogle ScholarPubMed
Cambon, C., Mansour, N.N. & Godeferd, F.S. 1997 Energy transfer in rotating turbulence. J. Fluid Mech. 337 (1), 303332.CrossRefGoogle Scholar
Clark di Leoni, P. & Mininni, P.D. 2016 Quantifying resonant and near-resonant interactions in rotating turbulence. J. Fluid Mech. 809, 821842.CrossRefGoogle Scholar
Connaughton, C., Nazarenko, S. & Pushkarev, A. 2001 Discreteness and quasiresonances in weak turbulence of capillary waves. Phys. Rev. E 63, 046306.CrossRefGoogle ScholarPubMed
David, V. & Galtier, S. 2022 Wave turbulence in inertial electron magnetohydrodynamics. J. Plasma Phys. 88 (5), 905880509.CrossRefGoogle Scholar
David, V. & Galtier, S. 2023 Locality of triadic interaction and Kolmogorov constant in inertial wave turbulence. J. Fluid Mech. 955, R2.CrossRefGoogle Scholar
Dematteis, G. & Lvov, Y.V. 2023 The structure of energy fluxes in wave turbulence. J. Fluid Mech. 954, A30.CrossRefGoogle Scholar
Deng, Y. & Zaher, H. 2021 On the derivation of the wave kinetic equation for NLS. Forum Math. Pi 9, 137.CrossRefGoogle Scholar
Falcon, E. & Mordant, N. 2022 Experiments in surface gravity–capillary wave turbulence. Annu. Rev. Fluid Mech. 54 (1), 125.CrossRefGoogle Scholar
Galtier, S. 2003 Weak inertial-wave turbulence theory. Phys. Rev. E 68 (1), 015301.CrossRefGoogle ScholarPubMed
Galtier, S. 2006 Wave turbulence in incompressible Hall magnetohydrodynamics. J. Plasma Phys. 72 (5), 721769.CrossRefGoogle Scholar
Galtier, S. 2014 Weak turbulence theory for rotating magnetohydrodynamics and planetary flows. J. Fluid Mech. 757, 114154.CrossRefGoogle Scholar
Galtier, S. 2023 a Fast magneto-acoustic wave turbulence and the Iroshnikov-Krachnan spectrum. J. Fluid Mech. 89 (2), 905890205.Google Scholar
Galtier, S. 2023 b Physics of Wave Turbulence. Cambridge University Press.Google Scholar
Galtier, S. & David, V. 2020 Inertial/kinetic-Alfvén wave turbulence: a twin problem in the limit of local interactions. Phys. Rev. Fluids 5 (4), 044603.CrossRefGoogle Scholar
Galtier, S. & Nazarenko, S.V. 2017 Turbulence of weak gravitational waves in the early universe. Phys. Rev. Lett. 119 (22), 221101.CrossRefGoogle ScholarPubMed
Galtier, S. & Nazarenko, S.V. 2021 Direct evidence of a dual cascade in gravitational wave turbulence. Phys. Rev. Lett. 127 (13), 131101.CrossRefGoogle ScholarPubMed
Galtier, S., Nazarenko, S.V., Newell, A.C. & Pouquet, A. 2002 Anisotropic turbulence of shear-Alfvén waves. Astrophys. J. 564 (1), L49L52.CrossRefGoogle Scholar
Gelash, A.A., L'vov, V.S. & Zakharov, V.E. 2017 Complete Hamiltonian formalism for inertial waves in rotating fluids. J. Fluid Mech. 831, 128150.CrossRefGoogle Scholar
Godeferd, F.S. & Moisy, F. 2015 Structure and dynamics of rotating turbulence: a review of recent experimental and numerical results. Appl. Mech. Rev. 67 (3), 030802.CrossRefGoogle Scholar
Griffin, A., Krstulovic, G., L'vov, V.S. & Nazarenko, S. 2022 Energy spectrum of two-dimensional acoustic turbulence. Phys. Rev. Lett. 128 (22), 224501.CrossRefGoogle ScholarPubMed
Hassaini, R. & Mordant, N. 2017 Transition from weak wave turbulence to soliton gas. Phys. Rev. Fluids 2 (9), 094803.CrossRefGoogle Scholar
Hassaini, R., Mordant, N., Miquel, B., Krstulovic, G. & Düring, G. 2019 Elastic weak turbulence: from the vibrating plate to the drum. Phys. Rev. E 99 (3), 033002.CrossRefGoogle Scholar
Hasselmann, K. 1962 On the non-linear energy transfer in a gravity-wave spectrum. Part 1. General theory. J. Fluid Mech. 12, 481500.CrossRefGoogle Scholar
Hopfinger, E.J., Gagne, Y. & Browand, F.K. 1982 Turbulence and waves in a rotating tank. J. Fluid Mech. 125, 505534.CrossRefGoogle Scholar
Hossain, M. 1994 Reduction in the dimensionality of turbulence due to a strong rotation. Phys. Fluids 6 (3), 10771080.CrossRefGoogle Scholar
Hrabski, A. & Pan, Y. 2022 On the properties of energy flux in wave turbulence. J. Fluid Mech. 936, A47.CrossRefGoogle Scholar
Jacquin, L., Leuchter, O., Cambon, C. & Mathieu, J. 1990 Homogeneous turbulence in the presence of rotation. J. Fluid Mech. 220, 152.CrossRefGoogle Scholar
Kochurin, E.A. & Kuznetsov, E.A. 2022 Direct numerical simulation of acoustic turbulence: Zakharov–Sagdeev spectrum. Sov. J. Exp. Theor. Phys. Lett. 116 (12), 863868.CrossRefGoogle Scholar
Kraichnan, R.H. 1973 Helical turbulence and absolute equilibrium. J. Fluid Mech. 59, 745752.CrossRefGoogle Scholar
Lanchon, N., Mora, D.O., Monsalve, E. & Cortet, P.-P. 2023 Internal wave turbulence in a stratified fluid with and without eigenmodes of the experimental domain. Phys. Rev. Fluids 8 (5), 054802.CrossRefGoogle Scholar
Le Reun, T., Favier, B., Barker, A.J. & Le Bars, M. 2017 Inertial wave turbulence driven by elliptical instability. Phys. Rev. Lett. 119 (3), 034502.CrossRefGoogle ScholarPubMed
Le Reun, T., Favier, B. & Le Bars, M. 2020 Evidence of the Zakharov-Kolmogorov spectrum in numerical simulations of inertial wave turbulence. Europhys. Lett. 132 (6), 64002.CrossRefGoogle Scholar
Lenain, L. & Melville, W.K. 2017 Measurements of the directional spectrum across the equilibrium saturation ranges of wind-generated surface waves. J. Phys. Oceanogr. 47, 21232138.CrossRefGoogle Scholar
Monsalve, E., Brunet, M., Gallet, B. & Cortet, P.-P. 2020 Quantitative experimental observation of weak inertial-wave turbulence. Phys. Rev. Lett. 125, 254502.CrossRefGoogle ScholarPubMed
Morize, C., Moisy, F. & Rabaud, M. 2005 Decaying grid-generated turbulence in a rotating tank. Phys. Fluids 17 (9), 095105–095105–11.CrossRefGoogle Scholar
Nayfeh, A.H. 2004 Perturbation Methods. Wiley-VCH Verlag GmbH & Co. KGaA.Google Scholar
Nazarenko, S. 2011 Wave Turbulence, Lecture Notes in Physics, vol. 825. Springer.CrossRefGoogle Scholar
Newell, A.C. 1968 The closure problem in a system of random gravity waves. Rev. Geophys. Space Phys. 6, 131.CrossRefGoogle Scholar
Novkoski, F., Pham, C.-T. & Falcon, E. 2023 Evidence of experimental three-wave resonant interactions between two dispersion branches. Phys. Rev. E 107 (4), 045101.CrossRefGoogle ScholarPubMed
Onorato, M., Dematteis, G., Proment, D., Pezzi, A., Ballarin, M. & Rondoni, L. 2022 Equilibrium and nonequilibrium description of negative temperature states in a one-dimensional lattice using a wave kinetic approach. Phys. Rev. E 105 (1), 014206.CrossRefGoogle Scholar
Ricard, G. & Falcon, E. 2021 Experimental quasi-1D capillary-wave turbulence. Europhys. Lett. 135 (6), 64001.CrossRefGoogle Scholar
Rodda, C., Savaro, C., Davis, G., Reneuve, J., Augier, P., Sommeria, J., Valran, T., Viboud, S. & Mordant, N. 2022 Experimental observations of internal wave turbulence transition in a stratified fluid. Phys. Rev. Fluids 7 (9), 094802.CrossRefGoogle Scholar
Savaro, C., Campagne, A., Linares, M.C., Augier, P., Sommeria, J., Valran, T., Viboud, S. & Mordant, N. 2020 Generation of weakly nonlinear turbulence of internal gravity waves in the Coriolis facility. Phys. Rev. Fluids 5 (7), 073801.CrossRefGoogle Scholar
Scott, J.F. 2014 Wave turbulence in a rotating channel. J. Fluid Mech. 741, 316349.CrossRefGoogle Scholar
Sharma, M.K., Verma, M.K. & Chakraborty, S. 2018 On the energy spectrum of rapidly rotating forced turbulence. Phys. Fluids 30 (11), 115102.CrossRefGoogle Scholar
Smith, L.M. & Waleffe, F. 1999 Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence. Phys. Fluids 11 (6), 16081622.CrossRefGoogle Scholar
Turner, L. 2000 Using helicity to characterize homogeneous and inhomogeneous turbulent dynamics. J. Fluid Mech. 408 (1), 205238.CrossRefGoogle Scholar
Waleffe, F. 1992 The nature of triad interactions in homogeneous turbulence. Phys. Fluids A 4 (2), 350363.CrossRefGoogle Scholar
Yarom, E. & Sharon, E. 2014 Experimental observation of steady inertial wave turbulence in deep rotating flows. Nat. Phys. 10 (7), 510514.CrossRefGoogle Scholar
Yokoyama, N. & Takaoka, M. 2021 Energy-flux vector in anisotropic turbulence: application to rotating turbulence. J. Fluid Mech. 908, A17.CrossRefGoogle Scholar
Zakharov, V.E., L'Vov, V.S. & Falkovich, G. 1992 Kolmogorov Spectra of Turbulence I: Wave Turbulence, Springer Series in Nonlinear Dynamics. Springer.CrossRefGoogle Scholar
Zeman, O. 1994 A note on the spectra and decay of rotating homogeneous turbulence. Phys. Fluids 6 (10), 32213223.CrossRefGoogle Scholar
Zhang, Z. & Pan, Y. 2022 Numerical investigation of turbulence of surface gravity waves. J. Fluid Mech. 933, A58.CrossRefGoogle Scholar
Zhou, Y. 1995 A phenomenological treatment of rotating turbulence. Phys. Fluids 7 (8), 20922094.CrossRefGoogle Scholar
Zhu, Y., Semisalov, B., Krstulovic, G. & Nazarenko, S. 2023 Direct and inverse cascades in turbulent Bose-Einstein condensates. Phys. Rev. Lett. 130 (13), 133001.CrossRefGoogle ScholarPubMed