Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-09T16:35:15.088Z Has data issue: false hasContentIssue false

Natural convection in horizontal pipe flow with a strong transverse magnetic field

Published online by Cambridge University Press:  27 February 2013

Oleg Zikanov*
Affiliation:
Department of Mechanical Engineering, University of Michigan - Dearborn, 4901 Evergreen Road, Dearborn, MI 48128-1491, USA
Yaroslav I. Listratov
Affiliation:
Moscow Power Engineering Institute, 14 Krasnokazarmennaya Street, Moscow, 111250, Russian Federation
Valentin G. Sviridov
Affiliation:
Moscow Power Engineering Institute, 14 Krasnokazarmennaya Street, Moscow, 111250, Russian Federation
*
Email address for correspondence: zikanov@umich.edu

Abstract

Linear stability analysis and direct numerical simulations are conducted to analyse mixed convection in a liquid metal flow in a horizontal pipe with imposed transverse magnetic field. The pipe walls are electrically insulated and subject to constant flux heating in the lower half. The results reveal the nature of anomalous temperature fluctuations detected in earlier experiments. It is found that, at the magnetic field strength far exceeding the laminarization threshold, the natural convection develops in the form of coherent quasi-two-dimensional rolls aligned with the magnetic field. Transport of the rolls by the mean flow causes high-amplitude, low-frequency fluctuations of temperature.

JFM classification

Type
Papers
Copyright
©2013 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alboussière, T., Garandet, J. P. & Moreau, R. 1993 Buoyancy-driven convection with a uniform magnetic field. Part 1. Asymptotic analysis. J. Fluid Mech. 253, 545563.Google Scholar
Branover, H. 1978 Magnetohydrodynamic Flow in Ducts. John Wiley & Sons.Google Scholar
Constantinescu, G. S. & Lele, S. K. 2002 A highly accurate technique for the treatment of flow equations at the polar axis in cylindrical coordinates using series expansions. J. Comput. Phys. 183 (1), 165186.Google Scholar
Davidson, P. A. 2001 An Introduction to Magnetohydrodynamics. Cambridge University Press.Google Scholar
Dey, P. & Zikanov, O. 2012a Scalar transport and perturbation dynamics in intermittent magnetohydrodynamic flow. Phys. Fluids 24, 084104.Google Scholar
Dey, P. & Zikanov, O. 2012b Turbulent flow and transport of passive scalar in magnetohydrodynamic channel flows with different orientations of magnetic field. Intl J. Heat Fluid Flow 36, 101117.Google Scholar
Gardner, R. A. & Lykoudis, P. S. 1971 Magnet-fluid mechanic pipe flow in transverse magnetic field. Part II: Heat transfer. J. Fluid Mech. 48, 129141.CrossRefGoogle Scholar
Gelfgat, A. Y. & Molokov, S. 2011 Quasi-two-dimensional convection in a three-dimensional laterally heated box in a strong magnetic field normal to main circulation. Phys. Fluids 23 (3), 034101.Google Scholar
Genin, L. G., Zhilin, V. G., Ivochkin, Y. P., Razuvanov, N. G., Belyaev, I. A., Listratov, Y. I. & Sviridov, V. G. 2011 Temperature fluctuations in a heated horizontal tube affected by transverse magnetic field. In Proc. Fundamental and Applied MHD, 8th International Pamir Conference, Borgo, Corsica pp. 37–41.Google Scholar
Gold, R. 1962 Magnetohydrodynamic pipe flow, Part I. J. Fluid Mech. 13, 505.Google Scholar
Krasnov, D., Rossi, M., Zikanov, O. & Boeck, T. 2008 Optimal growth and transition to turbulence in channel flow with spanwise magnetic field. J. Fluid Mech. 596, 73101.Google Scholar
Krasnov, D., Zikanov, O. & Boeck, T. 2011 Comparative study of finite difference approaches to simulation of magnetohydrodynamic turbulence at low magnetic Reynolds number. Comput. Fluids 50 (1), 4659.Google Scholar
Krasnov, D., Zikanov, O. & Boeck, T. 2012 Numerical study of magnetohydrodynamic duct flow at high Reynolds and Hartmann numbers. J. Fluid Mech. 704, 421446.CrossRefGoogle Scholar
Krasnov, D., Zikanov, O., Rossi, M. & Boeck, T. 2010 Optimal linear growth in magnetohydrodynamic duct flow. J. Fluid Mech. 653, 273299.Google Scholar
Lyubimova, T. P., Lyubimov, D. V., Morozov, V. a., Scuridin, R. V., Hadid, H. B. & Henry, D. 2009 Stability of convection in a horizontal channel subjected to a longitudinal temperature gradient. Part 1. Effect of aspect ratio and Prandtl number. J. Fluid Mech. 635, 275296.CrossRefGoogle Scholar
Matthews, P. C., Hurlburt, N. E., Proctor, M. R. E. & Brownjohn, D. P. 1992 Compressible magnetoconvection in oblique fields: linearized theory and simple nonlinear models. J. Fluid Mech. 240, 559569.Google Scholar
Mistrangelo, C. & Bühler, L. 2009 Influence of helium cooling channels on magnetohydrodynamic flows in the HCLL blanket. Fusion Engng Design 84 (7–11), 13231328.Google Scholar
Morinishi, Y., Lund, T. S., Vasilyev, O. V. & Moin, P. 1998 Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys. 143, 90124.Google Scholar
Ni, M.-J., Munipalli, R., Huang, P., Morley, N. B. & Abdou, M. A. 2007 A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part I: On a rectangular collocated grid system. J. Comput. Phys. 227, 174204.Google Scholar
Piller, M. 2005 Direct numerical simulation of turbulent forced convection in a pipe. Intl J. Numer. Meth. Fluids 49 (6), 583602.Google Scholar
Satake, S., Kunugi, T. & Smolentsev, S. 2002 Direct numerical simulations of turbulent pipe flow in a transverse magnetic field. J. Turbul. 3, 2729.Google Scholar
Satake, S., Yoshida, N., Kunugi, T., Takase, K., Ose, Y. & Kano, T. 2008 DNS of turbulent heat transfer under a uniform magnetic field at high Reynolds number. Fusion Engng Design 83 (7–9), 10921096.Google Scholar
Shercliff, J. A. 1962 The Theory of Electromagnetic Flow-measurement. Cambridge University Press.Google Scholar
Smolentsev, S., Moreau, R. & Abdou, M. 2008 Characterization of key magnetohydrodynamic phenomena for PbLi flows for the US DCLL blanket. Fusion Engng Design 83, 771783.CrossRefGoogle Scholar
Smolentsev, S., Moreau, R., Bühler, L. & Mistrangelo, C. 2010 MHD thermofluid issues of liquid-metal blankets: phenomena and advances. Fusion Engng Design 85 (7–9), 11961205.CrossRefGoogle Scholar
Smolentsev, S., Vetcha, N. & Moreau, R. 2011 MHD mixed convection in a rectangular duct: 3D, 2D, and 1D solutions. In Fundamental and Applied MHD, Proceedings of 8th PAMIR Conference, Borgo, Corsica, France, pp. 79–83.Google Scholar
Sviridov, V. G., Ivochkin, Y. P., Razuvanov, N. G., Zhilin, V. G., Genin, L. G. & Ivanova, O. N. 2003 Liquid metal MHD heat transfer investigations applied to fusion Tokamak reactor cooling ducts. Magnetohydrodynamics 39, 557564.Google Scholar
Sviridov, V. G., Razuvanov, N. G., Ivochkin, Y. P., Listratov, Y. I. & Sviridov, E. V. 2008 The experimental liquid metal heat transfer investigations applied to fusion reactors. In Proc. Fundamental and Applied MHD, 7th Intl Pamir Conf., Giens pp. 885–890.Google Scholar
Sviridov, V. G., Razuvanov, N. G., Ivochkin, Y. P., Listratov, Y. I., Sviridov, E. V., Genin, L. G., Zhilin, V. G. & Belyaev, I. A. 2010. Liquid metal heat transfer investigations applied to tokamak reactor. In Proc. Intl Heat Transfer Conf. IHTC14, Washington, DC, 1–8.Google Scholar
Sviridov, V. G. & Shpanskii, Y. S. 1994 Effect of thermogravitational convection and a longitudinal magnetic field on the heat exchange in liquid metal flow through a horizontal pipe. Magnetohydrodynamics 30 (1), 7583.Google Scholar
Thess, A. & Zikanov, O. 2007 Transition from two-dimensional to three-dimensional magnetohydrodynamic turbulence. J. Fluid Mech. 579, 383412.CrossRefGoogle Scholar
Valls, E. M. D., Batet, L., Medina, V. D. & Sedano, L. A. 2012 MHD thermofluid flow simulation of channels with a uniform thermal load as applied to HCLL breeding blankets for fusion technology. Magnetohydrodynamics 48 (1), 157168.Google Scholar
Vargaftik, N. B. 1994 Handbook of Physical Properties of Liquids and Gases. CRC Press.Google Scholar
Vorobev, A. & Zikanov, O. 2007 Instability and transition to turbulence in a free shear layer affected by a parallel magnetic field. J. Fluid Mech. 574, 131154.Google Scholar
Votyakov, E. V., Kassinos, S. C. & Albets-Chico, X. 2009 Analytic models of heterogenous magnetic fields for liquid metal flow simulations. Theor. Comp. Fluid Dyn. 23, 571578.Google Scholar
Zhao, Y. & Zikanov, O. 2012 Instabilities and turbulence in magnetohydrodynamic flow in a toroidal duct prior to transition in Hartmann layers. J. Fluid Mech. 692, 288316.Google Scholar
Zhao, Y., Zikanov, O. & Krasnov, D. 2011 Instability of magnetohydrodynamic flow in an annular channel at high Hartmann number. Phys. Fluids 23, 084103.Google Scholar
Zikanov, O. 2010 Essential Computational Fluid Dynamics. Wiley Higher Education.Google Scholar