Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T13:43:44.639Z Has data issue: false hasContentIssue false

Near-contact electrophoretic particle motion

Published online by Cambridge University Press:  26 April 2006

Michael Loewenberg
Affiliation:
Department of Chemical Engineering, University of Colorado, Boulder, CO 80309-0424, USA Present address: Department of Chemical Engineering, Yale University, New Haven, Connecticut, CT 06520-2159, USA.
Robert H. Davis
Affiliation:
Department of Chemical Engineering, University of Colorado, Boulder, CO 80309-0424, USA

Abstract

The near-contact axisymmetric electrophoretic motion of a pair of spherical particles with thin electric double layers and differing surface zeta-potentials is analysed for low Reynolds numbers and moderate surface potentials. Near-contact electrophoretic motion of a spherical particle normal to a planar conducting boundary is analysed under the same assumptions. Pairwise motion is computed by considering touching particles in point contact; relative motion is described by a perturbation about the touching state using lubrication theory. Analytical formulae are derived for two particles of disparate sizes, and for the motion of a single particle towards a boundary; numerical calculations are performed for all size ratios. The results have a universal form with respect to the particle zeta-potentials. All results indicate that the electrophoresis is a much more efficient mechanism of near-contact motion than is buoyancy. An explanation for this finding is given in terms of the electro-osmotic slip velocity on the particle surfaces that facilitates fluid removal from between approaching surfaces.

Type
Research Article
Copyright
© 1995 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acrivos, A., Jeffrey, D. J. & Saville, D. A. 1990 Particle migration in suspensions by thermocapillary or electrophoretic motion. J. Fluid Mech. 212, 95110.Google Scholar
Batchelor, G. K. 1982 Sedimentation in a dilute polydisperse system of interacting spheres. Part 1. General theory. J. Fluid Mech. 119, 379408.Google Scholar
Bike, S. G. & Prieve, D. C. 1990 Electrohydrodynamic lubrication with thin double layers. J. Colloid Interface Sci. 136, 95112.Google Scholar
Brenner, H. 1961 The slow motion of a sphere through a viscous fluid towards a plane interface. Chem. Engng Sci. 16, 242251.Google Scholar
Chen, S. B. & Keh, H. J. 1988 Electrophoresis in a dilute dispersion of colloidal spheres. AIChE J. 34, 10751085.Google Scholar
Cooley, M. D. A. & O'Neill, M. E. 1969 a On the slow motion generated in a viscous fluid by the approach of a sphere to a plane wall or stationary sphere. Mathematika 16, 3749.Google Scholar
Cooley, M. D. A. & O'Neill, M. E. 1969b On the slow motion of two spheres in contact along their line of centres through a viscous fluid. Proc. Camb. Phil. Soc. 66, 407415.Google Scholar
Cox, R. G. & Brenner, H. 1967 The slow motion of a sphere through a viscous fluid towards a plane surface. II. Small gap widths, including inertial effects. Chem. Engng Sci. 22, 17531777.Google Scholar
Czarnecki, J. 1979 van der Waals attraction energy between sphere and half-space. J. Colloid Interface Sci. 72, 361362.Google Scholar
Dagan, Z., Pfeffer, R. & Weinbaum, S. 1982 Axisymmetric stagnation flow of a spherical particle near a finite planar surface at zero Reynolds number. J. Fluid Mech. 122, 273294.Google Scholar
Davis, A. M. J., O'Neill, M. E., Dorrepaal, J. M. & Ranger, K. B. 1976 Separation from the surface of two equal spheres in Stokes flow. J. Fluid Mech. 77, 625644.Google Scholar
Davis, R. H. 1984 The rate of coagulation of a dilute polydisperse system of sedimenting spheres. J. Fluid Mech. 145, 179199.Google Scholar
Dukhin, S. S. & Derajaguin, B. V. 1974 Electrokinetic phenomena. In Surface and Colloid Science, vol. 7. Wiley.
Erdelyi, A., Magnus, W., Oberhettinger, F. & Tricomi, F. G. 1954 Tables of Integral Transforms, vol. II. McGraw-Hill.
Gluckman, M. J., Pfeffer, R. & Weinbaum, S. 1971 A new technique for treating multiparticle slow viscous flow: axisymmetric flow past spheres and spheroids. J. Fluid Mech. 50, 705740.Google Scholar
Goren, S. L. 1970 The normal force exerted by creeping flow on a small sphere touching a plane. J. Fluid Mech. 41, 619625.Google Scholar
Gregory, J. 1981 Approximate expressions for retarded van der Waals interaction. J. Colloid Interface Sci. 83, 138145.Google Scholar
Happel, J. & Brenner, H. 1983 Low Reynolds Number Hydrodynamics. Martinus Nijhoff.
Hogg, R., Healy, T. W. & Fuerstenau, D. W. 1966 Mutual coagulation of colloidal dispersions. Trans. Faraday Soc. 62, 16381651.Google Scholar
Keh, H. J. & Anderson, J. L. 1985 Boundary effects on electrophoretic motion of colloidal spheres. J. Fluid Mech. 153, 417439.Google Scholar
Keh, H. J. & Chen, S. B. 1989 Particle interactions in electrophoresis I. Motion of two spheres along their line of centers. J. Colloid Interface Sci. 130, 542555.Google Scholar
Keh, H. J. & Lien, L. C. 1989 Electrophoresis of a dielectric sphere normal to a large conducting plane. J. Chinese Inst. Chem. Engng 20, 283.Google Scholar
Keh, H. J. & Lien, L. C. 1991 Electrophoresis of a colloidal sphere along the axis of a circular orifice or a circular disk. J. Fluid Mech. 224, 305333.Google Scholar
Keh, H. J. & Yang, F. R. 1990 Particle interactions in electrophoresis. III. Axisymmetric motion of multiple spheres. J. Colloid Interface Sci. 139, 105116.Google Scholar
Kim, S. & Karrila, S. 1991 Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann.
Loewenberg, M. & Davis, R. H. 1993a Near-contact thermocapillary motion of two nonconducting drops. J. Fluid Mech. 256, 107131.Google Scholar
Loewenberg, M. & Davis, R. H. 1993b Near-contact thermocapillary migration of a nonconducting, viscous drop normal to a plane interface. J. Colloid Interface Sci. 160, 265275.Google Scholar
Maude, A. D. 1961 End effects in a falling-sphere viscometer. R. J. Appl. Phys. 12, 293295.Google Scholar
Moon, P. & Spencer, D. E. 1961 Field Theory Handbook, p. 104. Springer.
Nichols, C. S., Loewenberg, M. & Davis, R. H. 1995 Electrophoretic particle aggregation. J. Colloid Interface Sci. (in review).Google Scholar
O'Brien, R. W. 1983 The solution of the electrokinetic equations for colloidal particles with thin double layers. J. Colloid Interface Sci. 92, 204216.Google Scholar
Reed, L. D. & Morrison, F. A. 1976 Hydrodynamic interaction in electrophoresis. J. Colloid Interface Sci. 54, 117133.Google Scholar
Russel, W. B., Saville, D. A. & Schowalter, W. R. 1989 Colloidal Dispersions. Cambridge University Press.
Smoluchowski, M. Von, 1903 Contribution à la théorie de l'endosmose électrique et de quelques phenomènes corrélatifs. Bull. Int. Acad. Sci. Cracovie 8, 182200.Google Scholar
Stimson, M. & Jeffery, G. B. 1926 The motion of two spheres in a viscous fluid. Proc. R. Soc. Lond. A 111, 110116.Google Scholar
Takagi, H. 1974 The force on a sphere lying near a plane surface of a viscous fluid. J. Phys. Soc. Japan 36, 14711473.Google Scholar
Yiantsios, S. G. & Davis, R. H. 1991 Close approach and deformation of two viscous drops due to gravity and van der Waals forces. J. Colloid Interface Sci. 144, 412433.Google Scholar