Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T20:56:30.207Z Has data issue: false hasContentIssue false

A new inviscid mode of instability in compressible boundary-layer flows

Published online by Cambridge University Press:  23 November 2015

Adam P. Tunney*
Affiliation:
Department of Engineering Science, University of Auckland, Auckland 1142, New Zealand
James P. Denier
Affiliation:
Department of Mathematics, Macquarie University, Sydney, NSW 2109, Australia
Trent W. Mattner
Affiliation:
School of Mathematical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
John E. Cater
Affiliation:
Department of Engineering Science, University of Auckland, Auckland 1142, New Zealand
*
Email address for correspondence: a.tunney@auckland.ac.nz

Abstract

The stability of an almost inviscid compressible fluid flowing over a rigid heated surface is considered. We focus on the boundary layer that arises. The effect of surface heating is known to induce a streamwise acceleration in the boundary layer near the surface. This manifests in a streamwise velocity which exhibits a maximum larger than the free-stream velocity (i.e. the streamwise velocity exhibits an ‘overshoot’ region). We explore the impact of this overshoot on the stability of the boundary layer, demonstrating that the compressible form of the classical Rayleigh equation (which governs the development of short wavelength instabilities) possesses a new unstable mode that is a direct consequence of this overshoot. The structure of this new class of modes in the small wavenumber limit is detailed, providing a valuable confirmation of our numerical results obtained from the full inviscid eigenvalue problem.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Back, L. H. 1969 Flow and heat transfer in laminar boundary layers with swirl. AIAA J. 7 (9), 17811789.CrossRefGoogle Scholar
Bae, Y. Y. & Emanuel, G. 1997 Tables for boundary-layer thicknesses of similar compressible laminar flow. J. Mech. Sci. Technol. 11 (4), 457467.Google Scholar
Brown, W. B. & Donoughe, P. L.1951 Tables of exact laminar-boundary-layer solutions when the wall is porous and fluid properties are variable. NACA Tech. Note 2479.Google Scholar
Cohen, C. B. & Reshotko, E.1955 Similar solutions for the compressible laminar boundary layer with heat transfer and pressure gradient. NACA Tech. Rep. 1293.Google Scholar
Curle, N. 1962 The Laminar Boundary Layer Equations. Oxford University Press.Google Scholar
Denier, J. P., Duck, P. W. & Li, J. 2005 On the growth (and suppression) of very short-scale disturbances in mixed forced-free convection boundary layers. J. Fluid Mech. 526, 147170.CrossRefGoogle Scholar
Denier, J. P. & Mureithi, E. W. 1996 Weakly nonlinear wave motions in a thermally stratified boundary layer. J. Fluid Mech. 315, 293316.CrossRefGoogle Scholar
Fedorov, A. V. 2011 Transition and stability of high-speed boundary layers. Annu. Rev. Fluid Mech. 43 (1), 7995.CrossRefGoogle Scholar
Fu, Y., Hall, P. & Blackaby, N. 1993 On the Görtler instability in hypersonic flows: Sutherland law fluids and real gas effects. Proc. R. Soc. Lond. A 342, 325377.Google Scholar
Gibson, D. W., Spisz, T. S., Taylor, J. C., Zalameda, J. N., Horvath, T. J., Tietjen, A. B., Tack, S. & Bush, B. C.2010 HYTHIRM radiance modeling and image analyses in support of STS-119, STS-125 and STS-128 space shuttle hypersonic re-entries. AIAA Paper 2010-245.Google Scholar
Hirschel, E. H. 1993 Hot experimental technique: a new requirement of aerothermodynamics. In New Trends in Instrumentation for Hypersonic Research (ed. Dwoyer, D. L. & Hussaini, M. Y.), NATO ASI Series, vol. 224, pp. 2539. Springer.CrossRefGoogle Scholar
Lees, L. & Lin, C. C.1946 Investigation of the stability of the laminar boundary layer in a compressible fluid. NACA Tech. Note 1115.Google Scholar
Li, T. Y. & Nagamatsu, H. T. 1955 Similar solutions of compressible boundary layer equations. J. Aeronaut. Sci. 22, 607616.Google Scholar
Mack, L. M. 1975 Linear stability theory and the problem of supersonic boundary layer transition. AIAA J. 13, 278289.CrossRefGoogle Scholar
Mack, L. M.1984 Special course on stability and transition of laminar flow. AGARD Report 709.Google Scholar
Mack, L. M. 1987 Review of linear compressible stability theory. In Stability of Time Dependent and Spatially Varying Flows (ed. Dwoyer, D. L. & Hussaini, M. Y.), pp. 164187. Springer.CrossRefGoogle Scholar
Malik, M. R. 1990a Numerical methods for hypersonic boundary layer stability. J. Comput. Phys. 86 (2), 376413.CrossRefGoogle Scholar
Malik, M. R. 1990b Prediction and control of transition in supersonic and hypersonic boundary layers. AIAA J. 27, 14871493.CrossRefGoogle Scholar
Masad, J. A., Nayfeh, A. H. & Al-Maaitah, A. A. 1992 Effect of heat transfer on the stability of compressible boundary layers. Comput. Fluids 21, 4361.CrossRefGoogle Scholar
McLeod, J. B. & Serrin, J. 1968a The behaviour of similar solutions in a compressible boundary layer. J. Fluid Mech. 34 (02), 337342.CrossRefGoogle Scholar
McLeod, J. B. & Serrin, J. 1968b The existence of similar solutions for some laminar boundary layer problems. Arch. Rat. Mech. Anal. 31, 288303.CrossRefGoogle Scholar
Morkovin, M. V. & Reshotko, E. 1990 Dialogue on progress and issues in stability and transition research. In Laminar-Turbulent Transition (ed. Eppler, R. & Fasel, H.), pp. 329. Springer.CrossRefGoogle Scholar
Mureithi, E. W., Denier, J. P. & Stott, J. 1997 The effect of buoyancy on upper-branch Tollmien–Schlichting wares. IMA J. Appl. Maths 58, 1950.CrossRefGoogle Scholar
Neely, A. J., Dasgupta, A. & Choudhury, R. 2014 A new method for prescribing non-uniform wall temperatures on wind tunnel models. In Proceedings of the 19th Aust. Fluid Mech. Conference, Melbourne, Australia, 8–11 December, RMIT University.Google Scholar
Reshotko, E. & Beckwith, I. E.1957 Compressible laminar boundary layer over a yawed infinite cylinder with heat transfer and arbitrary Prandtl number. NACA Tech. Note 3986.Google Scholar
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer.CrossRefGoogle Scholar
Steinrück, H. 1994 Mixed convection over a cooled horizontal plate: non-uniqueness and numerical instabilities of the boundary-layer equations. J. Fluid Mech. 278, 251265.CrossRefGoogle Scholar
Stewartson, K. 1964 The Theory of Laminar Boundary Layer in Compressible Fluids. Oxford University Press.CrossRefGoogle Scholar
Zamelda, J. N., Horvath, T. J., Tomek, D. M., Tietjen, A. B., Gibson, D. M., Taylor, J. C., Tack, S., Bush, B. C., Mercer, C. D. & Shea E., J.2010 Application of a near infrared imaging system for thermographic imaging of the space shuttle during hypersonic re-entry. AIAA Paper 2010-244.CrossRefGoogle Scholar