Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T23:21:30.709Z Has data issue: false hasContentIssue false

Non-Galilean Taylor–Culick law governs sheet dynamics in unsteady fragmentation

Published online by Cambridge University Press:  15 August 2023

Y. Wang
Affiliation:
The Fluid Dynamics of Disease Transmission Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
L. Bourouiba*
Affiliation:
The Fluid Dynamics of Disease Transmission Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
*
Email address for correspondence: lbouro@mit.edu

Abstract

We present the results of a combined experimental and theoretical investigation of sheet evolution, expansion and retraction, under unsteady fragmentation upon drop impact on a surface of comparable size to that of the drop. We quantify and model the effect of the continuous time-varying – unsteady – shedding of droplets from the sheet via its bounding rim. We present and validate especially developed advanced image processing algorithms that quantify, with high accuracy, the key quantities involved in such unsteady fragmentation, from sheet, to rim, to ligaments, to droplet properties. With these high precision measurements, we show the important effect of continuous unsteady droplet shedding on the sheet dynamics. We combine experiments and theory to derive and validate governing equations of the sheet that incorporate such continuous shedding – associated with continuous loss of momentum and mass – from unsteady fragmentation. Combining this theory with the universal unsteady rim dynamics discovered in Wang et al. (Phys. Rev. Lett., vol. 120, 2018, 204503), we show that the governing equation of the sheet can be reduced to a continuous-shedding, non-Galilean Taylor–Culick law, from which we deduce new analytical expressions for the time evolution of the sheet radius. We show the robustness of the predictions to changes of fluid properties, including surface tension and moderate fluid viscosity and elasticity, including use of physiological mucosalivary fluid. We also reconcile prior literature's inconsistent experimental results on the sheet dynamics upon drop impact.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agbaglah, G. & Deegan, R. D. 2014 Growth and instability of the liquid rim in the crown splash regime. J. Fluid Mech. 752, 485496.CrossRefGoogle Scholar
Bourouiba, L. 2021 Fluid dynamics of respiratory infectious diseases. Annu. Rev. Biomed. Engng 23 (1), 547577.CrossRefGoogle ScholarPubMed
Bourouiba, L., Dehandschoewercker, E. & Bush, J. W. M. 2014 Violent expiratory events: on coughing and sneezing. J. Fluid Mech. 745, 537563.CrossRefGoogle Scholar
Clanet, C., Béguin, C., Richard, D. & Quéré, D. 2004 Maximal deformation of an impacting drop. J. Fluid Mech. 517, 199208.CrossRefGoogle Scholar
Comiskey, P. M., Yarin, A. L., Kim, S. & Attinger, D. 2016 Prediction of blood back spatter from a gunshot in bloodstain pattern analysis. Phys. Rev. Fluids 1, 043201.CrossRefGoogle Scholar
Culick, F. E. C. 1960 Comments on a ruptured soap film. J. Appl. Phys. 31, 11281129.CrossRefGoogle Scholar
Durst, F. 1996 Penetration length and diameter development of vortex rings generated by impacting water drops. Exp. Fluids 21, 110117.CrossRefGoogle Scholar
Eggers, J., Fontelos, M. A., Josserand, C. & Zaleski, S. 2010 Drop dynamics after impact on a solid wall: theory and simulations. Phys. Fluids 22, 113.CrossRefGoogle Scholar
Gilet, T. & Bourouiba, L. 2014 Rain-induced ejection of pathogens from leaves: revisiting the hypothesis of splash-on-film using high-speed visualization. Integr. Compar. Biol. 54, 974–84.CrossRefGoogle ScholarPubMed
Gilet, T. & Bourouiba, L. 2015 Fluid fragmentation shapes rain-induced foliar disease transmission. J. R. Soc. Interface 12, 20141092.CrossRefGoogle ScholarPubMed
Gordillo, J. M., Lhuissier, H. & Villermaux, E. 2014 On the cusps bordering liquid sheets. J. Fluid Mech. 754, R1.CrossRefGoogle Scholar
Josserand, C. & Thoroddsen, S. T. 2016 Drop impact on a solid surface. Annu. Rev. Fluid Mech. 48, 365391.CrossRefGoogle Scholar
Klein, A., Kurilovich, D., Lhuissier, H., Versolato, O., Lohse, D., Villermaux, E. & Gelderblom, H. 2020 Drop fragmentation by laser-pulse impact. J. Fluid Mech. 893, A7.CrossRefGoogle Scholar
Laan, N., de Bruin, K. G., Slenter, D., Wilhelm, J., Jermy, M. & Bonn, D. 2015 Bloodstain pattern analysis: implementation of a fluid dynamic model for position determination of victims. Sci. Rep. 5, 11461.CrossRefGoogle ScholarPubMed
Lagubeau, G., Fontelos, M. A., Josserand, C, Maurel, A., Pagneux, V. & Petitjeans, P. 2012 Spreading dynamics of drop impacts. J. Fluid Mech. 713, 5060.CrossRefGoogle Scholar
Lastakowski, H., Boyer, F., Biance, A. L., Pirat, C. & Ybert, C. 2014 Bridging local to global dynamics of drop impact onto solid substrates. J. Fluid Mech. 747, 103118.CrossRefGoogle Scholar
Lee, J. B., Laan, N., de Bruin, K. G., Skantzaris, G., Shahidzadeh, N., Derome, D., Carmeliet, J. & Bonn, D. 2016 Universal rescaling of drop impact on smooth and rough surfaces. J. Fluid Mech. 786, R4.CrossRefGoogle Scholar
Madejski, J. 1976 Solidification of droplets on a cold surface. Intl J. Heat Mass Transfer 19, 10091013.CrossRefGoogle Scholar
Mundo, C. H. R., Sommerfeld, M. & Tropea, C. 1995 Droplet-wall collisions: experimental studies of the deformation and breakup process. Intl J. Multiphase Flow 21, 151173.CrossRefGoogle Scholar
Philippi, J., Lagrée, P.-Y. & Antkowiak, A. 2016 Drop impact on a solid surface: short-time self-similarity. J. Fluid Mech. 795, 96135.CrossRefGoogle Scholar
Poulain, S., Villermaux, E. & Bourouiba, L. 2018 Ageing and burst of surface bubbles. J. Fluid Mech. 851, 636671.CrossRefGoogle Scholar
Rein, M. 1993 Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12, 6193.CrossRefGoogle Scholar
Riboux, G. & Gordillo, J. M. 2014 Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing. Phys. Rev. Lett. 113, 113.Google Scholar
Riboux, G. & Gordillo, J. M. 2016 Maximum drop radius and critical Weber number for splashing in the dynamical Leidenfrost regime. J. Fluid Mech. 803, 516527.CrossRefGoogle Scholar
Roisman, I. V. 2010 On the instability of a free viscous rim. J. Fluid Mech. 661, 206228.CrossRefGoogle Scholar
Roisman, I. V., Berberovi, E. & Tropea, C. 2009 Inertia dominated drop collisions. I. On the universal flow in the lamella. Phys. Fluids 21, 052103.CrossRefGoogle Scholar
Roisman, I. V., Rioboo, R. & Tropea, C. 2002 Normal impact of a liquid drop on a dry surface: model for spreading and receding. Proc. R. Soc. Lond. A 458, 14111430.CrossRefGoogle Scholar
Rozhkov, A., Prunet-Foch, B. & Vignes-Adler, M. 2002 Impact of water drops on small targets. Phys. Fluids 14, 3485.CrossRefGoogle Scholar
Rozhkov, A., Prunet-Foch, B. & Vignes-Adler, M. 2004 Dynamics of a liquid lamella resulting from the impact of a water drop on a small target. Proc. R. Soc. Lond. A 460, 26812704.CrossRefGoogle Scholar
Savart, F. 1833 Mémoire sur le choc de deux veines liquides animées de mouvements directement opposés. Ann. Chim. 55, 257310.Google Scholar
Saylor, J. R. & Grizzard, N. K. 2004 The optimal drop shape for vortices generated by drop impacts: the effect of surfactants on the drop surface. Exp. Fluids 36, 783790.CrossRefGoogle Scholar
Scheller, B. L. & Bousfield, D. W. 1995 Newtonian drop impact with a solid surface. AIChE J. 41, 13571367.CrossRefGoogle Scholar
Stow, C. D. & Stainer, R. D. 1977 The physical products of a splashing water drop. J. Met. Soc. Japan 55, 518532.CrossRefGoogle Scholar
Taylor, G. I. 1959 a The dynamics of thin-sheets of fluid. I. Water bells. Proc. R. Soc. Lond. A 253, 289295.Google Scholar
Taylor, G. I. 1959 b The dynamics of thin sheets of fluid. III. Disintegration of fluid sheets. Proc. R. Soc. Lond. A 253, 313321.Google Scholar
Thoroddsen, S. T., Takehara, K. & Etoh, T. G. 2012 Micro-splashing by drop impacts. J. Fluid Mech. 706, 560570.CrossRefGoogle Scholar
Ting, L. & Keller, J. B. 1990 Slender jets and thin sheets with surface tension. SIAM J. Appl. Maths 50 (6), 15331546.CrossRefGoogle Scholar
Traverso, G., Laken, S., Lu, C. C., Maa, R., Langer, R. & Bourouiba, L. 2013 Fluid fragmentation from hospital toilets. arXiv:1310.5511.Google Scholar
Vernay, C., Ramos, L. & Ligoure, C. 2015 Free radially expanding liquid sheet in air: time- and space-resolved measurement of the thickness field. J. Fluid Mech. 764, 428444.CrossRefGoogle Scholar
Villermaux, E. & Bossa, B. 2011 Drop fragmentation on impact. J. Fluid Mech. 668, 412435.CrossRefGoogle Scholar
Wachters, L. H. J. & Westerling, N. A. J. 1966 The heat transfer from a hot wall to impinging water drops in the spheroidal state. Chem. Engng Sci. 21, 10471056.CrossRefGoogle Scholar
Wang, Y. & Bourouiba, L. 2017 Drop impact on small surfaces: thickness and velocity profiles of the expanding sheet in the air. J. Fluid Mech. 814, 510534.CrossRefGoogle Scholar
Wang, Y. & Bourouiba, L. 2018 a Non-isolated drop impact on surfaces. J. Fluid Mech. 835, 2444.CrossRefGoogle Scholar
Wang, Y. & Bourouiba, L. 2018 b Unsteady sheet fragmentation: droplet sizes and speeds. J. Fluid Mech. 848, 946967.CrossRefGoogle Scholar
Wang, Y. & Bourouiba, L. 2021 Growth and breakup of ligaments in unsteady fragmentation. J. Fluid Mech. 910, A39.CrossRefGoogle Scholar
Wang, Y. & Bourouiba, L. 2022 Mass, momentum and energy partitioning in unsteady fragmentation. J. Fluid Mech. 935, A29.CrossRefGoogle Scholar
Wang, Y., Dandekar, R., Bustos, N., Poulain, S. & Bourouiba, L. 2018 Universal rim thickness in unsteady sheet fragmentation. Phys. Rev. Lett. 120, 204503.CrossRefGoogle ScholarPubMed
Wildeman, S., Visser, C. W., Sun, C. & Lohse, D. 2016 On the spreading of impacting drops. J. Fluid Mech. 805, 636655.CrossRefGoogle Scholar
Xu, L., Barcos, L. & Nagel, S. R. 2006 Splashing of liquids: interplay of surface roughness with surrounding gas. Phys. Rev. E 76, 066311.CrossRefGoogle Scholar
Xu, L., Zhang, W. W. & Nagel, S. R. 2005 Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94, 184505.CrossRefGoogle ScholarPubMed
Yarin, A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing ${\ldots }$. Annu. Rev. Fluid Mech. 38, 159192.CrossRefGoogle Scholar
Yarin, A. L. & Weiss, D. A. 1995 Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J. Fluid Mech. 283, 141173.CrossRefGoogle Scholar
Yun, S. & Lim, G. 2014 Ellipsoidal drop impact on a solid surface for rebound suppression. J. Fluid Mech. 752, 266281.CrossRefGoogle Scholar