Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T18:40:08.911Z Has data issue: false hasContentIssue false

The nonlinear stability of dynamic thermocapillary liquid layers

Published online by Cambridge University Press:  21 April 2006

Marc K. Smith
Affiliation:
Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA

Abstract

When a temperature gradient is imposed on the free surface of a thin liquid layer, fluid motion can develop due to thermocapillarity. Previous work using linear theory has shown that the layer can become unstable to a pair of obliquely travelling hydrothermal waves. Here, we shall study the nonlinear behaviour of this system to determine possible equilibrium waveforms for the instability when the critical point from the linear theory is slightly exceeded. We find that for all Prandtl numbers and small Biot numbers, possible waveforms are composed of only one of the unstable linear waves. For small Prandtl number and larger Biot numbers, a combination of the two linear waves is a possible waveform. Further analysis of these equilibrium states shows that both exhibit the Eckhaus and Benjamin-Feir sideband instability and a corresponding phase instability. Thus, they become modulated on long length-and timescales as the system develops.

Type
Research Article
Copyright
© 1988 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benjamin, T. B. & Feir, J. E. 1967 J. Fluid Mech. 27, 417.
Benney, D. J. & Newell, A. C. 1967 J. Math. Phys. 46, 133.
Benney, D. J. & Roskes, G. J. 1969 Stud. Appl. Maths 48, 377.
Beetherton, C. S. & Spiegel, E. A. 1983 Phys. Lett. 96A, 152.
Chun, C.-H. & Wuest, W. 1979 Acta Astronaut. 6, 1073.
Davey, A., Hocking, L. M. & Stewartson, K. 1974 J. Fluid Mech. 63, 529.
Davis, S. H. 1987 Ann. Rev. Fluid Mech. 19, 403.
Davis, S. H. & Homsy, G. M. 1980 J. Fluid Mech. 98, 527.
Davis, S. H. & Segel, L. A. 1968 Phys. Fluids 11, 470.
Eckhaus, W. 1965 Studies in Non-Linear Stability Theory. Springer.
Hall, P. 1984 Phys. Rev. A 29, 2921.
Holmes, C. A. 1985 Proc. R. Soc. Lond. A 402, 299.
Kamotani, Y., Ostrach, S. & Vargas, M. 1984 J. Cryst. Growth 66, 83.
Kenning, D. B. R. 1968 Appl. Mech. Rev. 21, 1101.
Kuramoto, Y. 1984 Chemical Oscillations, Waves, and Turbulence. Springer.
Moon, H. T., Huerre, P. & Redekopp, L. G. 1983 Physica 7D, 135.
Newell, A. C. & Whitehead, J. A. 1969 J. Fluid Mech. 38, 279.
Preisser, F., Schwabe, D. & Scharmann, A. 1983 J. Fluid Mech. 126, 545.
Sani, R. 1964 J. Fluid Mech. 20, 315.
Scriven, L. E. & Sternling, C. V. 1960 Nature 187, 186.
Scott, M. R. & Watts, H. A. 1975 Rep. SAND 75-0198. Sandia Labs, Alburquerque, NM.
Scott, M. R. & Watts, H. A. 1977 SIAM J. Numer. Anal. 14, 40.
Sen, A. K. & Davis, S. H. 1982 J. Fluid Mech. 121, 163.
Smith, M. K. 1986 Phys. Fluids 29, 3182.
Smith, M. K. & Davis, S. H. 1983 J. Fluid Mech. 132, 119.
Stuart, J. T. & DiPrima, R. C. 1978 Proc. R. Soc. Lond. A 362, 27.
Xu, J. J. & Davis, S. H. 1984 Phys. Fluids 27, 1102.