Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T18:39:48.077Z Has data issue: false hasContentIssue false

Non-specular reflection of walking droplets

Published online by Cambridge University Press:  08 September 2016

Giuseppe Pucci
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA The Hatter Department of Marine Technologies, University of Haifa, Haifa, 3498838, Israel
Pedro J. Sáenz
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Luiz M. Faria
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
John W. M. Bush*
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
*
Email address for correspondence: bush@math.mit.edu

Abstract

Since their discovery by Yves Couder and Emmanuel Fort, droplets walking on a vibrating liquid bath have attracted considerable attention because they unexpectedly exhibit certain features reminiscent of quantum particles. While the behaviour of walking droplets in unbounded geometries has to a large extent been rationalized theoretically, no such rationale exists for their behaviour in the presence of boundaries, as arises in a number of key quantum analogue systems. We here present the results of a combined experimental and theoretical study of the interaction of walking droplets with a submerged planar barrier. Droplets exhibit non-specular reflection, with a small range of reflection angles that is only weakly dependent on the system parameters, including the angle of incidence. The observed behaviour is captured by simulations based on a theoretical model that treats the boundaries as regions of reduced wave speed, and rationalized in terms of momentum considerations.

Type
Rapids
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, A., Madsen, J., Reichelt, C., Ahl, S. R., Lautrup, B., Ellegaard, C., Levinsen, M. T. & Bohr, T. 2015 Double-slit experiment with single wave-driven particles and its relation to quantum mechanics. Phys. Rev. E 92 (1), 013006.Google Scholar
Batelaan, H., Jones, E., Huang, W. C.-W. & Bach, R. 2016 Momentum exchange in the electron double-slit experiment. J. Phys. Conf. Series 701, 012007.Google Scholar
Blanchette, F. 2016 Modeling the vertical motion of drops bouncing on a bounded fluid reservoir. Phys. Fluids 28 (3), 032104.CrossRefGoogle Scholar
Bush, J. W. M. 2015a The new wave of pilot-wave theory. Phys. Today 68, 4753.CrossRefGoogle Scholar
Bush, J. W. M. 2015b Pilot-wave hydrodynamics. Annu. Rev. Fluid Mech. 49, 269292.Google Scholar
Bush, J. W. M., Oza, A. U. & Molácek, J. 2014 The wave-induced added mass of walking droplets. J. Fluid Mech. 755, R7.Google Scholar
Couder, Y. & Fort, E. 2006 Single particle diffraction and interference at a macroscopic scale. Phys. Rev. Lett. 97, 154101.Google Scholar
Couder, Y., Protière, S., Fort, E. & Boudaoud, A. 2005 Dynamical phenomena: walking and orbiting droplets. Nature 437, 208.CrossRefGoogle ScholarPubMed
Damiano, A., Brun, P.-T., Harris, D. M., Galeano-Rios, C. & Bush, J. W. M. 2016 Surface topography measurements of the bouncing droplet experiment. Exp. Fluids (submitted).Google Scholar
Eddi, A., Fort, E., Moisy, F. & Couder, Y. 2009 Unpredictable tunneling of a classical wave-particle association. Phys. Rev. Lett. 102, 240401.Google Scholar
Eddi, A., Sultan, E., Moukhtar, J., Fort, E., Rossi, M. & Couder, Y. 2011 Information stored in Faraday waves: the origin of path memory. J. Fluid Mech. 674, 433463.Google Scholar
Faraday, M. 1831 On the forms and states of fluids on vibrating elastic surfaces. Phil. Trans. R. Soc. Lond. 121, 319340.Google Scholar
Faria, L. 2016 A model for Faraday pilot-waves over variable topography. J. Fluid Mech. (submitted).Google Scholar
Fort, E., Eddi, A., Boudaoud, A., Moukhtar, J. & Couder, Y. 2010 Path-memory induced quantization of classical orbits. Proc. Natl Acad. Sci. USA 107 (41), 1751517520.Google Scholar
Gilet, T. 2014 Dynamics and statistics of wave-particle interactions in a confined geometry. Phys. Rev. E 90 (5), 052917.Google Scholar
Gilet, T. 2016 Quantumlike statistics of deterministic wave-particle interactions in a circular cavity. Phys. Rev. E 93 (4), 042202.Google Scholar
Harris, D.2015, The pilot-wave dynamics of walking droplets in confinement. PhD thesis, Massachusetts Institute of Technology.Google Scholar
Harris, D. & Bush, J. W. M. 2014 Droplets walking in a rotating frame: from quantized orbits to multimodal statistics. J. Fluid Mech. 739, 444464.Google Scholar
Harris, D. & Bush, J. W. M. 2015 Generating uniaxial vibration with an electrodynamic shaker and external air bearing. J. Sound Vib. 334, 255269.Google Scholar
Harris, D., Liu, T. & Bush, J. W. M. 2015 A low-cost, precise piezoelectric droplet-on-demand generator. Exp. Fluids 56, 8390.Google Scholar
Harris, D., Moukhtar, J., Fort, E., Couder, Y. & Bush, J. W. M. 2013 Wavelike statistics from pilot-wave dynamics in a circular corral. Phys. Rev. E 88, 011001(R).Google Scholar
Labousse, M.2014 Etude d’une dynamique à mémoire de chemin: une expérimentation thórique. PhD thesis, Université Paris 6.Google Scholar
Labousse, M., Oza, A. U., Perrard, S. & Bush, J. W. M. 2016 Pilot-wave dynamics in a harmonic potential: quantization and stability of circular orbits. Phys. Rev. E 93 (3), 033122.Google Scholar
Labousse, M. & Perrard, S. 2014 Non-Hamiltonian features of a classical pilot-wave dynamics. Phys. Rev. E 90 (2), 022913.Google Scholar
Labousse, M., Perrard, S., Couder, Y. & Fort, E. 2014 Build-up of macroscopic eigenstates in a memory-based constrained system. New J. Phys. 16 (11), 113027.Google Scholar
Milewski, P., Galeano-Rios, C., Nachbin, A. & Bush, J. W. M. 2015 Faraday pilot-wave hydrodynamics: modeling and computation. J. Fluid Mech. 778, 361388.Google Scholar
Molacek, J. & Bush, J. W. M. 2013a Droplets bouncing on a vibrating fluid bath. J. Fluid Mech. 727, 582611.CrossRefGoogle Scholar
Molacek, J. & Bush, J. W. M. 2013b Droplets walking on a vibrating fluid bath: towards a hydrodynamic pilot-wave theory. J. Fluid Mech. 727, 612647.Google Scholar
Oza, A., Harris, D. M., Rosales, R. R. & Bush, J. W. M. 2014 Pilot-wave dynamics in a rotating frame: on the emergence of orbital quantization. J. Fluid Mech. 744, 404429.Google Scholar
Oza, A., Rosales, R. R. & Bush, J. W. M. 2013 A trajectory equation for walking droplets: a hydrodynamic pilot-wave theory. J. Fluid Mech. 737, 552570.CrossRefGoogle Scholar
Perrard, S., Labousse, M., Fort, E. & Couder, Y. 2014a Chaos driven by interfering memory. Phys. Rev. Lett. 113, 104101.Google Scholar
Perrard, S., Labousse, M., Miskin, M., Fort, E. & Couder, Y. 2014b Self-organization into quantized eigenstates of a classical wave-driven particle. Nature Comm. 5, 3219.Google Scholar
Protière, S., Boudaoud, A. & Couder, Y. 2006 Particle wave association on a fluid interface. J. Fluid Mech. 554, 85108.CrossRefGoogle Scholar
Wind-Willassen, O., Molacek, J., Harris, D. M. & Bush, J. W. M. 2013 Exotic states of bouncing and walking droplets. Phys. Fluids 25, 082002.Google Scholar